
SuiteTax Plug-In for SuiteScript 2.0

Pre-General Availability

March 4, 2020 2019.2

Copyright © 2005, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

If this document is in public or private pre-General Availability status:

This documentation is in pre-General Availability status and is intended for demonstration and preliminary
use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of
this documentation.

If this document is in private pre-General Availability status:

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your pre-General
Availability trial agreement only. It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms
and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has
been executed by you and Oracle and with which you agree to comply. This document and information
contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Sample Code

Oracle may provide sample code in SuiteAnswers, the Help Center, User Guides, or elsewhere through
help links. All such sample code is provided "as is” and “as available”, for use only with an authorized
NetSuite Service account, and is made available as a SuiteCloud Technology subject to the SuiteCloud
Terms of Service at www.netsuite.com/tos.

Oracle may modify or remove sample code at any time without notice.

No Excessive Use of the Service

As the Service is a multi-tenant service offering on shared databases, Customer may not use the Service
in excess of limits or thresholds that Oracle considers commercially reasonable for the Service. If Oracle
reasonably concludes that a Customer’s use is excessive and/or will cause immediate or ongoing
performance issues for one or more of Oracle’s other customers, Oracle may slow down or throttle
Customer’s excess use until such time that Customer’s use stays within reasonable limits. If Customer’s
particular usage pattern requires a higher limit or threshold, then the Customer should procure a
subscription to the Service that accommodates a higher limit and/or threshold that more effectively aligns
with the Customer’s actual usage pattern.

Beta Features

Oracle may make available to Customer certain features that are labeled “beta” that are not yet generally
available. To use such features, Customer acknowledges and agrees that such beta features are subject
to the terms and conditions accepted by Customer upon activation of the feature, or in the absence of
such terms, subject to the limitations for the feature described in the User Guide and as follows: The beta
feature is a prototype or beta version only and is not error or bug free and Customer agrees that it will
use the beta feature carefully and will not use it in any way which might result in any loss, corruption or
unauthorized access of or to its or any third party’s property or information. Customer must promptly
report to Oracle any defects, errors or other problems in beta features to support@netsuite.com or
other designated contact for the specific beta feature. Oracle cannot guarantee the continued availability
of such beta features and may substantially modify or cease providing such beta features without
entitling Customer to any refund, credit, or other compensation. Oracle makes no representations or
warranties regarding functionality or use of beta features and Oracle shall have no liability for any lost
data, incomplete data, re-run time, inaccurate input, work delay, lost profits or adverse effect on the
performance of the Service resulting from the use of beta features. Oracle’s standard service levels,
warranties and related commitments regarding the Service shall not apply to beta features and they may
not be fully supported by Oracle’s customer support. These limitations and exclusions shall apply until the
date that Oracle at its sole option makes a beta feature generally available to its customers and partners
as part of the Service without a “beta” label.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.netsuite.com/tos

Send Us Your Feedback
We'd like to hear your feedback on this document.

Answering the following questions will help us improve our help content:

■ Did you find the information you needed? If not, what was missing?

■ Did you find any errors?

■ Is the information clear?

■ Are the examples correct?

■ Do you need more examples?

■ What did you like most about this document?

Click here to send us your comments. If possible, please provide a page number or section title to identify
the content you're describing.

To report software issues, contact NetSuite Customer Support.

https://forms.netsuite.com/app/site/crm/externalcustrecordpage.nl?compid=NLCORP&formid=7934&h=AACffht_Z8z_HuYP9WVlR0vEDjgiOr-yMhA

Table of Contents
SuiteTax Plug-in Overview . 1

SuiteTax Plug-in Features in NetSuite . 3
Developing a SuiteTax Plug-in Implementation . 5

Create or Set Up Required Objects . 6
Create the Plug-in Implementation Script File . 7
Add the Plug-in Implementation . 10
Test the Plug-in Implementation . 12
Bundle the Plug-in Implementation . 12

Administering a SuiteTax Plug-in Implementation . 12
Enable Features for a SuiteTax Plug-in Implementation . 13
Install a SuiteTax Plug-in Bundle . 13
Enable the SuiteTax Plug-in Implementation . 14
Configure the Tax Engine for Nexuses . 14

SuiteTax Plug-In Interface Definition . 15
calculateTax(context) . 16

TaxCalculationInput . 17
TaxCalculationOutput . 64
TaxCalculationNotificationList . 79

defineAdditionalFields(context) . 81
AdditionalFieldsContext . 82

onTransactionEvent(context) . 83
TransactionEvent . 84
TransactionEventCode . 85

SuiteTax Plug-in Reference . 87
SuiteTax Plug-in Guidelines and Best Practices . 87
Values on an Address Object . 88

SuiteTax Plug-in Overview 1

SuiteTax Plug-in Overview
Use the SuiteTax plug-in to define tax engines that connect to third-party systems and calculate taxes for
transactions in NetSuite. The tax engine that calculates the taxes on a transaction is defined by the tax
registration of the transaction. The tax engine associated with the nexus represents an implementation of
the SuiteTax plug-in. The plug-in implementation defines the process by which the tax engine calculates
taxes on a transaction. You can use one plug-in implementation per nexus or use a single plug-in
implementation with multiple nexuses.

To create and use a tax engine, you must first define the nexus and the associated tax types and tax
codes in NetSuite. Then, a developer creates an implementation of the SuiteTax plug-in. Only Tax Engine
type plug-in implementations which have been enabled in the NetSuite account can be selected as a tax
engine for a subsidiary. When you edit the tax registrations of a subsidiary, you specify a tax engine for
the nexus. Any transactions that correspond to the nexus use the tax engine to calculate the applicable
taxes for the transaction.

You can calculate taxes on a transaction-level basis or on a line item-level basis. NetSuite passes
transaction and line item data to the plug-in implementation. A developer uses this data to define the
behavior of the plug-in implementation and the algorithm that defines how taxes are calculated for a
transaction in the associated nexus. For example, a plug-in implementation can use the Bill From or Bill
To values and the total amount of the transaction to calculate taxes based on the address and amount
properties.

Depending on the design of the plug-in implementation, the implementation can define the transaction
and line item data on which taxes are calculated and send a request to a third-party tax system to
calculate the tax. The tax details are then sent back to NetSuite by the plug-in implementation and
displayed or saved on the transaction record.

For information about the SuiteTax plug-in, see the following topics:

NetSuite Role For more information, see ...

All roles SuiteTax Plug-in Features in NetSuite

Developer Developing a SuiteTax Plug-in Implementation

Administrator Administering a SuiteTax Plug-in Implementation

Tax Calculation Process
The following figure describes the process for calculating taxes with a SuiteTax plug-in implementation:

SuiteTax Plug-In for SuiteScript 2.0

SuiteTax Plug-in Overview 2

1. User requests tax calculation. A user clicks Preview Tax on a taxable transaction or saves a
taxable transaction. If tax has not yet been calculated, no taxes appear on the transaction before
this operation.

2. NetSuite looks up nexus and tax engine. NetSuite looks up the appropriate nexus for the
transaction and identifies the corresponding plug-in implementation specified as the tax engine
for the nexus.

3. NetSuite passes the transaction data. NetSuite passes the transaction and line item data for
the transaction to the plug-in implementation.

4. Plug-in implementation processes the transaction data. The logic defined for the plug-in
implementation processes the transaction data and sends the appropriate data in a request to an
external third-party tax calculation system.

5. Tax system sends response. The external third-party system calculates the tax details and
passes the data back to the plug-in implementation.

6. Plug-in implementation sends tax details back to NetSuite. The tax details must include the
tax summary for each tax type and tax code and can also include tax details for each individual
line item.

7. NetSuite displays or saves the tax details. The transaction in NetSuite includes the tax
summary information in the Summary box and can also include tax details for each individual line
item on the Tax Details subtab. If previous tax details existed, this process overwrites the existing
values. The tax details are saved to the database if the user saves the transaction.

Transaction Types Supported By the SuiteTax Plug-in
The following table lists the transaction types and the associated transaction type ID supported by the
SuiteTax Plug-in:

Transaction Type Transaction Type ID

Cash Refund cashrfnd

Cash Sale cashsale

Credit Card Charge cardchrg

Credit Card Refund cardrfnd

SuiteTax Plug-In for SuiteScript 2.0

SuiteTax Plug-in Features in NetSuite 3

Transaction Type Transaction Type ID

Credit Memo custcred

Estimate estimate

Expense Report

Note: Upon saving an expense report with taxes, NetSuite sends the tax
amounts to the tax engine for reporting purposes. The tax engine is not expected
to calculate taxes or send back results for expense reports.

exprept

Invoice custinvc

Journal Entry (book generic only)

Note: Upon saving a journal transaction with taxes, NetSuite sends the tax
amounts to the tax engine for reporting purposes. The tax engine is not expected
to calculate taxes or send back results for journal transactions.

journal

Opportunity opprtnty

Purchase Order purchord

Return Authorization rtnauth

Sales Order salesord

Vendor Bill vendbill

Vendor Credit (Bill Credit) vendcred

Vendor Return vendauth

SuiteTax Plug-in Features in NetSuite
To use the SuiteTax plug-in in a NetSuite account, an administrator must enable the SuiteTax feature,
install a bundle that contains an implementation of the SuiteTax plug-in, and enable the implementation.
A bundle can contain one or more SuiteTax plug-in implementations, where each implementation
represents a different third-party tax engine.

For more information, see Developing a SuiteTax Plug-in Implementation and Administering a SuiteTax
Plug-in Implementation.

Enabling the SuiteTax feature, and supporting the use of SuiteTax plug-in implementations, means that
you are using a tax calculation engine that is different from the legacy NetSuite tax engine. The SuiteTax
tax calculation engine enables greater flexibility to support specific country needs and legislation changes
regarding tax calculation and reporting. With SuiteTax enabled, tax setup procedures vary from the tax
setup procedures described in the legacy tax help topics. For details about setting up taxes with SuiteTax,
see the help topic General SuiteTax Topics.

After an administrator installs a SuiteTax bundle and enables a SuiteTax plug-in implementation that
represents a tax engine, you can complete the following tasks for taxable transactions:

■ Assign a Tax Engine to a Nexus

■ Calculate Taxes on a Transaction

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4283850851.html

SuiteTax Plug-in Features in NetSuite 4

Assign a Tax Engine to a Nexus
NetSuite supports the use of more than one tax service provider. If the SuiteTax feature and the tax
engine you want to use is enabled in your account, you can assign different tax engines to the tax
registrations on each subsidiary record.

To assign a tax engine to a nexus, edit the list of tax registrations for a subsidiary and specify the tax
engine to use with the appropriate nexus for the subsidiary.

The following screenshot shows the Tax Registrations subtab on the Subsidiary page:

In the Tax Engine column, select the tax engine to use for the nexus. The dropdown list shows tax engine
implementations that have been added and enabled in your account.

Calculate Taxes on a Transaction
After you assign a tax engine to a nexus, you can calculate taxes for any taxable transaction associated
with that nexus. You can either calculate taxes on-demand or calculate taxes automatically. You can use
the Preview Tax button on any taxable transaction to calculate appropriate taxes whenever you make
changes to the taxable items on the transaction. In addition, NetSuite calculates taxes automatically when
you save the transaction.

When you click Preview Tax, the taxes displayed on the transaction are temporarily displayed in NetSuite.
The amounts are saved to the database when you save the transaction.

You must recalculate taxes when you make the following changes to taxable items on a transaction:

■ Add items. You add taxable items to the transaction.
■ Change existing items. You modify fields on the transaction and these changes require a

recalculation of tax.

Note: As an alternative to the Preview Tax button, tax calculation for transactions can also be
triggered through SuiteScript. See the help topic Triggering Tax Calculation through SuiteScript.

Calculated taxes appear on the Summary box and on the Tax Details subtab of a transaction form when
you calculate taxes. The tax amount and gross amount also appear on the Items, Expenses, or Billables
subtab of a transaction. For credit card transactions, the tax also appear in the header section. The taxes
and tax types that appear on a transaction depend on the method by which the tax engine calculates
taxes.

Transaction Summary Box
The total tax summary by tax type appears on the Summary box after you click Preview Tax on a
transaction or you save the transaction. The tax summary is for all taxable items on a transaction for that
tax type. All transactions that use a tax engine defined by a SuiteTax plug-in implementation must show
summary totals in the Summary box.

The following screenshot show the Summary box of a transaction with the GST/HST tax totals:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_1565108575.html

SuiteTax Plug-in Features in NetSuite 5

Tax Details Subtab
The total tax summary by tax type appears on the Summary box after you click Preview Tax on a
transaction or you save the transaction. The taxes by item type appear on the Tax Details subtab if the
tax engine defined by a SuiteTax plug-in implementation returns taxes by line item. The tax details are
grouped by tax type and tax code.

If an item has multiple tax types or tax codes associated with it, each tax type or tax code appears on
a separate line on the Tax Details subtab. The tax details include the tax type, code, basis, rate, and
amount. The tax type, tax code, and tax rate that are returned by the tax engine must be maintained
separately in the plug-in implementation as well as in NetSuite. The Details column shows the information
returned by the tax engine used to calculate the tax.

The Tax Details subtab also includes a Tax Details Override check box. Users can check this box to allow
changes to system-generated tax detail lines. The tax engine cannot change output after the Tax Details
Override box has been checked. You can use the TaxCalculationInput.isTaxOutputOverridden() method
to return a Boolean value indicating whether this box is checked.

For more information about the Tax Details subtab, see the help topic Tax Details on Transactions in
SuiteTax.

Calculate Taxes Example
You add a taxable item to a transaction and click Preview Tax. Depending on the tax engine functionality
defined by the SuiteTax plug-in implementation, the tax details appear on the Summary box and the Tax
Details subtab. You save the transaction. The tax details are saved to the database.

You then change the amount of the item on the Items subtab. NetSuite removes the tax details in the
Summary box and the line-item details on the Tax Details subtab. Click Preview Tax to view the updated
tax details. When you save the transaction, NetSuite recalculates the tax and saves the updated tax details
to the database.

Note: Preview tax calculation is not available if the Tax Details Override box is checked.

Developing a SuiteTax Plug-in Implementation
NetSuite provides an interface to the SuiteTax plug-in. You can create an implementation of the interface
that represents a tax engine in NetSuite. Use the tax engine to calculate taxes for taxable transactions
associated with a nexus.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283867856.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283867856.html

Developing a SuiteTax Plug-in Implementation 6

You can create one implementation of the plug-in interface that defines tax engines for all nexuses in a
NetSuite account, or you can create multiple implementations that each define a tax engine that you can
use with a single nexus. The number of implementations depends on your requirements.

To create a plug-in implementation, use a developer account to develop and test the plug-in
implementation. Then, use SuiteBundler to bundle the plug-in objects and distribute them to other
NetSuite accounts. NetSuite administrators use the bundle to install the tax engines and their associated
objects in a NetSuite account and enable the tax engine. For more information about administration tasks
for a SuiteTax Plug-in bundle, see Administering a SuiteTax Plug-in Implementation.

The following table describes the basic steps in developing a single plug-in implementation of the
SuiteTax plug-in. Use these steps to create one or more SuiteTax plug-in implementations that define tax
engines in a NetSuite account.

Step Description

Enable features. Enable the features required for developing the plug-in implementation, including
the SuiteTax and Server SuiteScript features.

For information, see Enable Features for a SuiteTax Plug-in Implementation.

Create required objects. Create the objects on which the plug-in implementation depends. These objects
include nexuses, tax types, and tax codes. You need the internal NetSuite ID of these
objects to complete development.

For information, see Create or Set Up Required Objects.

Create script file. Create the script file that contains the SuiteTax plug-in implementation.

For information, see Create the Plug-in Implementation Script File.

Add the plug-in
implementation.

Add the plug-in implementation using the plug-in script file and any required utility
files that you created in the previous step to the development account.

For information, see Add the Plug-in Implementation.

Test the plug-in
implementation.

Test the functionality of the tax engine to make sure that it properly calculates taxes
for the taxable transactions. You will need to activate the plug-in implementation and
create a tax nexus.

For information, see Test the Plug-in Implementation.

Bundle the plug-in
implementation.

Bundle the plug-in implementation for distribution to other NetSuite accounts.
NetSuite administrators use this bundle to install the plug-in implementation and
plug-in script and utility files.

For information, see Bundle the Plug-in Implementation.

Create or Set Up Required Objects
Before you begin to develop a SuiteTax plug-in implementation, you must set up the tax features for the
development account. Any SuiteTax plug-in implementation requires the following objects in the account.
In addition, the tax type and tax code details that the plug-in implementation returns as tax details must
exist in NetSuite.

Note: The information provided in this section is intended for use as a guideline. For more
detailed information on setting up taxes for a company that uses SuiteTax, see the help topic
General SuiteTax Topics.

The following table describes the objects that must exist in the account when you begin development of
the plug-in implementation:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4283850851.html

Developing a SuiteTax Plug-in Implementation 7

Object Type Description

Nexus A nexus is a tax jurisdiction, usually defined at the country level. Each parent company or
subsidiary must be associated with at least one nexus.

The SuiteTax plug-in implementation is referenced by a nexus as a tax engine. You must have a
nexus to which you assign the tax engine.

For information about nexuses, see the following help topics:

■ Understanding Nexuses in SuiteTax

■ Setting Up Nexuses in SuiteTax

■ Assigning Tax Registrations to a Subsidiary in SuiteTax

Tax type A tax type determines where the tax paid or collected is tracked on the balance sheet. A tax type
is associated with a nexus.

The SuiteTax plug-in implementation must return the tax type internal ID as part of the tax
details, either on a transaction or line-item level. The internal ID returned by the implementation
must exist in NetSuite.

For information about tax types, see the help topic Understanding Tax Types and Tax Codes in
SuiteTax.

Tax code Tax codes contain information about tax rates and the types of transactions that the tax codes
should be applied to. A tax code is associated with a tax type. A tax type can have multiple tax
codes.

The SuiteTax plug-in implementation must return the internal ID of the tax code as part
of the tax details, either on a transaction or line-item level. The internal ID returned by the
implementation must exist in NetSuite.

For information about tax codes, see the help topic Understanding Tax Types and Tax Codes in
SuiteTax.

Standard or
custom field

You can pass additional field values to the SuiteTax plug-in implementation to use with your
tax calculation algorithm. You can use standard NetSuite fields or custom fields, either on the
transaction form or the item record form.

If you want to pass custom field values to the implementation, you must create the custom fields
before you include them in the plug-in implementation.

For more information about creating custom fields, see the help topic Custom Fields.

Create the Plug-in Implementation Script File
You must implement each SuiteTax plug-in interface function in a JavaScript file (with a .js extension) to
define the behavior of the plug-in implementation. You can use the SuiteCloud IDE or another JavaScript
IDE or text editor to create the plug-in script file.

Interface Functions
The following table describes the functions that must be implemented in the plug-in script file if using
SuiteScript 2.0:

Function Description

calculateTax(context) Defines the tax calculation functionality for a SuiteTax plug-in
implementation. Use the methods available to the TaxCalculationInput and
TaxCalculationInputLine objects to get information about a taxable transaction.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283851663.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4296038572.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4296038273.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283869397.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283869397.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283869397.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4283869397.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2826978.html

Developing a SuiteTax Plug-in Implementation 8

Function Description
You can access transaction-level properties such as location, shipping
and handling costs, and shipping and billing addresses and line item-level
properties such as item type, quantity, and value.

After you calculate the tax amounts on a transaction or line-item level, use the
methods available to the TaxCalculationOutput object to pass the tax details,
including tax amounts and tax types, back to NetSuite.

This function is called by NetSuite when you click Preview Tax on a taxable
transaction or when you save a taxable transaction.

You can use the SuiteScript API N/http Module method to request tax details
from a third-party external system.

Use TaxCalculationNotificationList to display error, warning, and notice
notifications to the NetSuite user during plug-in implementation execution.

defineAdditionalFields(context) Defines the additional fields on a transaction or sublist that NetSuite passes
to the plug-in implementation. The fields can be standard NetSuite fields or
custom fields added to the record form for the transaction type or line values.

Use this function to pass additional field values to the plug-in that are not
supported by the methods available to the TaxCalculationInput or the
TaxCalculationInputLine interface input objects. Use the field values to define
additional plug-in functionality for tax calculation on the transaction.

Note: If you do not want to pass additional field values to the plug-in
implementation, leave this function with an empty declaration.

onTransactionEvent(context) Defines the functionality for a SuiteTax plug-in implementation when specific
events occur on the transaction record. You can define plug-in functionality for
voids and deletions of a transaction.

Use the methods available to the TaxCalculationInput object to get information
about the transaction and use TransactionEvent to get the type of event that
occurred.

Note: This function is not called when a user clicks Preview Taxes
on a supported taxable transaction.

SuiteTax Plug-in Object Model

The following figure shows the object model for the interface input and output objects:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4296361104.html

Developing a SuiteTax Plug-in Implementation 9

Basic Process for Implementing Interface Functions
Use the following basic processes to define the plug-in implementation functionality for calculating
tax on a transaction and line-item level. Both the transaction and line-item levels must be set in the
implementation.

To calculate taxes on a transaction level:

1. Use the methods available to the TaxCalculationInput object to access transaction details.

2. Calculate the taxes on the transaction in the plug-in script using the transaction values.

3. Use setTaxSummaryLine(options) to add the summary to the TaxCalculationOutput interface
output object.

The summary total appears in the Summary box for the transaction in NetSuite. See Transaction
Summary Box.

Important: You must use setTaxSummaryLine(options) to set the summary for each tax
type on which you calculate values.

To calculate taxes on a line item-level:

1. Use the TaxCalculationInput object and the lines property to get the array of all line items in the
transaction.

SuiteTax Plug-In for SuiteScript 2.0

Developing a SuiteTax Plug-in Implementation 10

Note: The order of lines returned is not guaranteed.

2. Use the properties available to the TaxCalculationInputLine objects to get details about each line
item in the transaction.

3. Create a TaxCalculationOutputLine object with createLine(options) to store the tax details for the
line item.

This object can hold information for different tax types and tax codes by calling
addTaxDetail(options).

4. Use addLine(options) to add the TaxCalculationOutputLine object to the
TaxCalculationOutput interface output object. The plug-in implementation passes these values
back to NetSuite and displays them on the Tax Details subtab for the transaction. See Tax Details
Subtab.

5. In the plug-in implementation script file, aggregate the totals for each tax type and tax code for
each line item.

6. Use setTaxSummaryLine(options) to add the summary to the TaxCalculationOutput interface
output object.

The summary total appears in the Summary box for the transaction in NetSuite. See Transaction
Summary Box.

Important: You must use setTaxSummaryLine(options) to set the summary for each tax
type on which you calculate values, even if you calculate taxes on a line-item level.

Rules and Guidelines
Use the following rules and guidelines when creating the plug-in implementation script file:

■ The plug-in script file can have any name, as long as it contains an implementation of each of the
interface functions.

■ If you want to create utility files with helper functions for the main implementation file, you can include
those files when you create the plug-in implementation for the SuiteTax plug-in in NetSuite. See Add
the Plug-in Implementation.

■ You can use SuiteScript API functions in a plug-in implementation. Governance limits apply to these
functions. The plug–in script file allows up to 1000 usage units when used with SuiteScript.

Add the Plug-in Implementation
When you have finished creating the plug-in implementation script file, create a new SuiteTax plug-in
implementation in the development account. When you create the plug-in implementation, you upload
the script file and other utility files as required. You can later bundle this implementation to distribute it to
other NetSuite accounts.

To add the script files and create the plug-in implementation:

1. In NetSuite, go to Documents > Files > File Cabinet.

2. On the Folder Contents page, click the name of the folder where you want to add the plug-in script
file. Optionally, click New Folder to create a new folder.

3. Click Add File. Select the plug-in script file and click Open.

SuiteTax Plug-In for SuiteScript 2.0

Developing a SuiteTax Plug-in Implementation 11

4. Optionally, repeat step 3 to upload any utility script files required by the plug-in implementation
script file.

5. Go to Customization > Plug-ins > Plug-in Implementations > New.
6. In the Script File field, select the script file that contains the implementation of the plug-in.
7. Click Create Plug-in Implementation.
8. On the Select Plug-in Type page, select the Tax Engine plug-in type.
9. On the Plug-in Implementation page, enter the following information:

Option Description

Name User-friendly name for the implementation. The plug-in implementation appears as a tax
engine in the following locations:

■ Manage Plug-ins page. Page used by administrators to enable/disable the plug-in
implementation in their account.

■ Subsidiary page. The plug-in implementation appears as a tax engine.

■ Bundle Builder. Select this name in the Bundle Builder to distribute the plug-in
implementation to other accounts.

ID Internal ID for the implementation for use in scripting. If you do not provide an ID,
NetSuite will provide one for you after you click Save.

Status Current status for the implementation. Choose Testing to have the implementation
accessible to the owner of the implementation. Choose Released to have the
implementation accessible in a production environment.

Log Level Logging level you want for the script. Select Debug, Audit, Error, or Emergency.

Execute As Role Role that the script runs as. The Execute As Role field provides role-based granularity in
terms of the permissions and restrictions of the executing script.

The Tax Engine role is added to your account when you enable the SuiteTax feature.
This role is set up with all the required permissions to use SuiteTax, and can be used
as template for creating customized tax roles. For more information, see the help topic
Roles and Permissions in SuiteTax.

You should set up your SuiteTax plug-in implementations to run under the Tax Engine
role.

Note: When using a customized version of the Tax Engine role, you should
consult your tax engine provider regarding your customizations.

Description Optional description of the implementation. The description appears for the
implementation on the Plug–In Implementations page.

Owner User account that owns the implementation. Default value is the name of the logged in
user.

10. On the Scripts subtab, in the Implementation field, the script file that you selected in step 6 is
automatically selected. You can change the script file that contains the implementation of the plug-
in, if required.

11. On the Scripts subtab, in the Library Script File list, select any utility script files (uploaded in step 4)
that are required by the plug-in script file

12. On the Unhandled Errors subtab, select which individuals will be notified if script errors occur. By
default, the Notify Script Owner box is checked.
To enter multiple email addresses in the Notify Emails field, separate email addresses with a semi-
colon.

13. Click Save. You can access the list of implementations by going to Customization > Plug-ins > Plug-
in Implementations.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4822121243.html

Developing a SuiteTax Plug-in Implementation 12

Test the Plug-in Implementation
To test a SuiteTax plug-in implementation, perform the following tasks:

■ Set up the plug-in implementation to run under the Tax Engine role. When you create the plug-in
implementation, you can set the role that the script runs as in the Execute As Role field. For more
information, see Add the Plug-in Implementation.

■ Enable the implementation. Use the Manage Plug-ins page to enable the plug-in implementation in
the development account for testing. See Enable the SuiteTax Plug-in Implementation.

■ Configure the tax engine for nexuses. Configure the plug-in implementation as a tax engine for the
appropriate nexuses through the Subsidiary page. For more information, see Configure the Tax
Engine for Nexuses.

■ Create transactions that use the tax nexus you created to test the plug-in implementation
functionality.

Important: You should test your plug-in implementation on each NetSuite version and release
in use by your NetSuite customers.

Bundle the Plug-in Implementation
After developing the SuiteTax plug-in implementation, you must distribute the implementation to a
production account. SuiteBundler allows NetSuite users to package together groups of objects for
distribution to other accounts. These packages are called bundles, or SuiteApps. To distribute the
required files and objects, create a bundle with SuiteBundler. After you create the bundle, administrators
can install the bundle in production accounts.

The following table lists the objects you must include in the bundle and their location on the Select
Objects page in the Bundle Builder:

Object Location On Select Objects Page

Plug-in script file

Utility files

File Cabinet > Files

Custom roles Roles > Custom Roles

Plug-in implementation Plug-ins > Tax Engine

For more information about creating a bundle, see the help topic Creating a Bundle with the Bundle
Builder in the SuiteBundler documentation.

Important: The specific SuiteTax implementation also depends on account specific objects that
cannot be added to a bundle, such as tax nexuses, tax types, and tax codes. The process to set up
these objects in the production account may vary depending on the implementation. See Install a
SuiteTax Plug-in Bundle.

Administering a SuiteTax Plug-in Implementation
After a developer creates an implementation of the Suitetax plug-in and bundles it as a SuiteApp, you can
install and set up the plug-in implementation bundle.

To install and set up an SuiteTax plug-in implementation, complete the following steps:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374254.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374254.html

Administering a SuiteTax Plug-in Implementation 13

■ Enable Features for a SuiteTax Plug-in Implementation

■ Install a SuiteTax Plug-in Bundle

■ Enable the SuiteTax Plug-in Implementation

■ Configure the Tax Engine for Nexuses

Enable Features for a SuiteTax Plug-in Implementation
Before you install a SuiteTax plug-in implementation, you must enable the Server SuiteScript and SuiteTax
features.

To enable features for the SuiteTax plug-in:

1. Choose Setup > Company > Enable Features.

2. On the SuiteCloud subtab, make sure that Server SuiteScript is checked. If necessary, check the
box and agree to the Terms of Service.

3. On the Tax subtab, check the box for SuiteTax.

4. Click Save.

Install a SuiteTax Plug-in Bundle
A developer can create an implementation of the SuiteTax plug-in and then bundle it for distribution to
other NetSuite accounts. An administrator can then install the bundle into a target NetSuite account.

To install the SuiteTax plug-in bundle:

1. Go to Customization > SuiteBundler > Search & Install Bundles.

2. On the Install Bundle page, choose Production Account in the Location dropdown.

3. Search for the plug-in bundle.

4. Click Install for the bundle.

Important: To avoid duplicate objects during install, select “Replace Existing Object” if
prompted.

After you begin the installation of a bundle, you can continue working in NetSuite as the bundle
installs.

To check on the progress of the installation, go to the list of installed bundles at Customization >
SuiteBundler > Search & Install Bundles > List. If installation is not complete, the Status column
displays the percentage of installation progress. Click Refresh to update the status. When
installation is complete, the Status column displays a green check.

Note: If no Install button is available, this SuiteApp may not have been shared with your
account. To get access to the SuiteApp, contact NetSuite Customer Support.

After You Install the Bundle
SuiteTax plug-in implementations will depend on other objects that cannot be included in a bundle, such
as tax nexuses, tax types, and tax codes. You can set up a tax nexus after you install a bundle, but the
other objects may need to be created in the production account after the bundle is installed.

SuiteTax Plug-In for SuiteScript 2.0

Administering a SuiteTax Plug-in Implementation 14

In general, you can use the following methods to create the dependent objects:

■ Run a bundle installation script. A bundle can include a specialized server SuiteScript that is
automatically run when the bundle is installed, updated, or uninstalled. A bundle installation script can
contain triggers to be executed before install, after install, before update, after update, and/or before
uninstall. See the help topic Bundle Installation Scripts.

■ Import the objects. Use a CSV file and the Import Assistant to import objects into a NetSuite account.
See the help topic CSV Imports Overview.

■ Create the objects manually. For more information about working with taxes in NetSuite, see the help
topic Tax Accounting Overview.

Contact the bundle author for more information.

Enable the SuiteTax Plug-in Implementation
After you install a bundle with a SuiteTax plug-in implementation, you must enable the plug-in
implementation for users to select it as a tax engine for nexuses.

To activate the plug-in implementation:

1. In NetSuite, go to Customization > Plug-ins > Manage Plug-ins.

2. Under Tax Calculation, check the box next to the name of the plug-in implementation.

3. Click Save.

Configure the Tax Engine for Nexuses

To assign the plug-in implementation as a third-party tax engine to a nexus:

1. If you are using a OneWorld account, go to Setup > Company > Subsidiaries and click the Edit link
of the subsidiary.

-or-

If you are using a non-OneWorld account, go to Setup > Company > Company Information.

2. Click the Tax Registrations subtab.

3. In the Tax Engine column, select the tax engine to use for this nexus. The dropdown list shows tax
engine implementations that have been added and activated in your account.

4. Click Save.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2993460.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N342646.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N1791910.html

SuiteTax Plug-In Interface Definition 15

SuiteTax Plug-In Interface Definition

Interface Functions
The SuiteTax plug-in interface includes the following functions:

Function Description

calculateTax(context) Defines the tax calculation functionality for a SuiteTax plug-in
implementation. Use the methods available to the TaxCalculationInput and
TaxCalculationInputLine objects to get information about a taxable transaction.

You can access transaction-level properties such as location, shipping
and handling costs, and shipping and billing addresses and line item-level
properties such as item type, quantity, and value.

After you calculate the tax amounts on a transaction or line-item level, use the
methods available to the TaxCalculationOutput object to pass the tax details,
including tax amounts and tax types, back to NetSuite.

This function is called by NetSuite when you click Preview Tax on a taxable
transaction or when you save a taxable transaction.

You can use the SuiteScript API N/http Module method to request tax details
from a third-party external system.

Use TaxCalculationNotificationList to display error, warning, and notice
notifications to the NetSuite user during plug-in implementation execution.

defineAdditionalFields(context) Defines the additional fields on a transaction or sublist that NetSuite passes
to the plug-in implementation. The fields can be standard NetSuite fields or
custom fields added to the record form for the transaction type or line values.

Use this function to pass additional field values to the plug-in that are not
supported by the methods available to the TaxCalculationInput or the
TaxCalculationInputLine interface input objects. Use the field values to define
additional plug-in functionality for tax calculation on the transaction.

Note: If you do not want to pass additional field values to the plug-in
implementation, leave this function with an empty declaration.

onTransactionEvent(context) Defines the functionality for a SuiteTax plug-in implementation when specific
events occur on the transaction record. You can define plug-in functionality for
voids and deletions of a transaction.

Use the methods available to the TaxCalculationInput object to get information
about the transaction and use TransactionEvent to get the type of event that
occurred.

Note: This function is not called when a user clicks Preview Taxes
on a supported taxable transaction.

Important: You cannot change these function signatures in a SuiteTax plug-in implementation.

SuiteTax Plug-in Object Model
The following figure shows the object model for the interface input and output objects:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4296361104.html

calculateTax(context) 16

calculateTax(context)
Function
Declaration

void calculateTax(context)

Type Interface function

Description Defines the tax calculation functionality for a SuiteTax plug-in implementation. Use the methods
available to the TaxCalculationInput and TaxCalculationInputLine objects to get information
about a taxable transaction.

Use JavaScript and SuiteScript to define tax calculation on a transaction. You can access
transaction-level properties such as shipping and handling costs and shipping and billing
addresses and line item-level properties such as item type, quantity, value, and when the
Multiple Shipping Routes feature is enabled, shipping addresses. Transaction-level and line
item-level discounts also are available.

Within this function, you can use SuiteScript and SOAP web services functionality to connect to
external systems, pass input information to the external system, and use the response in tax
calculations.

After you calculate the tax amounts on a transaction or line item level, use the methods
available to the TaxCalculationOutput objects to pass the tax details, including tax amounts, tax
types, and tax codes, back to NetSuite.

The tax amounts appear in the summary panel for the transaction and on the Tax Details subtab
for each individual line item.

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 17

This function is called by NetSuite when you click Preview Tax on a taxable transaction or when
you save a taxable transaction.

Returns void

Parameters ■ TaxCalculationInput

■ TaxCalculationOutput

■ TaxCalculationNotificationList

TaxCalculationInput

Type Interface input object

Description Contains input values to use in tax calculation.

Method ■ getAdditionalFieldValue(options)

Properties ■ billFromAddress

■ billToAddress

■ currency

■ discounts

■ discountTotal

■ entity

■ entityType

■ lines

■ location

■ nexus

■ postingPeriodEndDate

■ postingPeriodStartDate

■ recordType

■ shipFromAddress

■ shipToAddress

■ subsidiary

■ subtotal

■ taxRegistration

■ transactionDate

■ transactionId

■ transformationSourceTransactions

■ postingTransaction

■ preview

■ taxOutputOverridden

■ taxRegistrationOverridden

Child Objects ■ Address

■ TaxCalculationInputLine

■ TaxCalculationInputDiscount

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 18

getAdditionalFieldValue(options)

Method
Declaration

string getAdditionalFieldValue(options)

Type Transaction-level object method

Description Returns the value for the field on the transaction passed as an input parameter. The field can be
a standard NetSuite field or a custom field added to the transaction form. Use this method if you
want to request that NetSuite sends additional fields to the plug-in implementation that are not
available in the methods for TaxCalculationInput.

To use this method, complete the following steps:

■ If you want to use a custom field, add the custom field to the transaction form.

■ Specify the names of the fields that you want NetSuite to pass to the plug-in using
defineAdditionalFields(context).

Returns string

Input Parameters options.fieldId {string}— field name of a standard or custom field on the transaction
form.

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...
 // Get value of 'memo' custom field

 var memoField = context.input.getAdditionalFieldValue('memo');

 // add memo field to description of tax calculation
 description = description + ': ' + memoField;
 ...

 }
 function defineAdditionalFields(context){
 context.addField({
 fieldId: 'memo'
 });
 }

 return {
 calculateTax: calculateTax,
 defineAdditionalFields: defineAdditionalFields
 }
}

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 19

billFromAddress

Property
Declaration

Address billFromAddress

Type Transaction-level object property

Description Returns an Address object that represents the bill from address of the current transaction
being processed by the plug-in implementation. See Values on an Address Object for more
information about from where the possible values for this address are sourced, depending on
the transaction type.

This property contains null if there is no billing address specified.

Use this object, for example, to calculate tax amounts based on the billing address for entity
fulfilling the transaction, if you charge taxes based on who sold an item. You can calculate tax
amounts based on the values of the billing address, including city, state, zip code, or country.

Note: You can also use location to load the location record for the Customer or
Vendor.

Returns Address | NULL

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...

 var address = context.input.billFromAddress;

 if (address.country == 'US') {
 // Calculate domestic tax amount
 ...
 } else {
 // Calculate international tax amount
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 20

billToAddress

Property
Declaration

Address billToAddress

Type Transaction-level object property

Description Returns an Address object that represents the bill to address of the current transaction
being processed by the plug-in implementation. See Values on an Address Object for more
information about from where the possible values for this address are sourced, depending on
the transaction type.

This property contains null if there is no billing address specified.

Use this object, for example, to calculate tax amounts based on the billing address of the
entity initiating the transaction. You can calculate tax amounts based on the values of the
billing address, including city, state, zip code, or country.

Returns Address | NULL

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...

 var address = context.input.billToAddress;

 if (address.country == 'US') {
 // Calculate domestic tax amount
 ...
 } else {
 // Calculate international tax amount
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

currency

Property
Declaration

Number currency

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 21

Type Transaction-level object property

Description Returns the internal NetSuite ID for the currency object with the transaction. For example,
for a sales order, this property returns the ID of the currency for the transaction. You can
use this value to load the currency record with record.load(options) and the type value of
‘currency’.

Use this object, for example, to calculate tax amounts based on the currency for the
transaction.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var currencyID = context.input.currency;
 var currencyObj = record.load({
 type: record.Type.CURRENCY,
 id: currencyID
 });
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

discounts

Property Declaration TaxCalculationInputDiscount[] discounts

Type Transaction-level object property

Description Returns an array of TaxCalculationInputDiscount objects.

You can use the discount items to calculate taxes based on the discounted amount.

Returns TaxCalculationInputDiscount[]

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 22

define([], function() {

 function calculateTax(context){
 ...
 var input = context.input;
 var currencySymbol = getCurrencySymbol
 (input.currency));

 var discounts = input.discounts;
 if (discounts)
 {
 Context.notifications.addNotice(
 'This transaction contains '
 + discounts.length
 + ' different discounts.'
);
 } else {
 Context.notifications.addNotice(
 'There are no discounts on this transaction.'
);
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

discountTotal

Property Declaration String discountTotal

Type Transaction-level object property

Description Returns the total of all discount items for a transaction as a string. This total includes
the amounts for line-level discounts.

If there are no discount items for a transaction, this property returns 0.

Returns string

Input Parameters None

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 23

 var discountTotal = context.input.discountTotal;
 context.notifications.addNotice(
 'The total discount amount for this transaction is
 ' + discountTotal
 + '.'
);
 ...
 }

 return {
 calculateTax: calculateTax
 }
});

entity

Property
Declaration

Number entity

Type Transaction-level object property

Description Returns the entity internal ID for the current transaction. The type of the entity depends on
the transaction type. For example, for a sales order transaction type, this property returns the
entity ID associated with the customer specified in the sales order Customer property.

Use this property to define plug-in functionality based on the transaction entity. For example,
you can use this ID with the SuiteScript API record.load(options) to access the entity record for
the transaction.

For more information, see the following topics:

■ record.load(options)

■ SuiteScript Supported Records

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var entityType = input.entityType;
 var entityID = input.entity;

 if (entityType == 'customer') {
 var customerRecord = record.load({
 type: entityType,
 id: entityID
 });
 }

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3170023.html

calculateTax(context) 24

 return {
 calculateTax: calculateTax
 }
}

entityType

Property Declaration String entityType

Type Object property

Description Returns the entity type for the current transaction. The type of the entity depends on the
transaction type. For example, for a sales order transaction type, this property returns the
customer entity type.

Use this property to define plug-in functionality based on the transaction entity. For
example, you can use this entity type with the SuiteScript API record.load(options) to access
the entity record for the transaction.

Returns string

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var entityType = input.entityType;
 var entityID = input.entity;
 if (entityType == 'customer') {
 var customerRecord = record.load({
 type: entityType,
 id: entityID
 });
 }

 return {
 calculateTax: calculateTax
 }
}

lines

Property
Declaration

TaxCalculationInputLine[] lines

Type Transaction-level object property

Description Returns an array of TaxCalculationInputLine objects. Each TaxCalculationInputLine
object represents a single line item on the transaction being processed by the plug-in

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 25

implementation. Use this property to get all the line items and iterate through them to
calculate tax for each line item.

Note: The order of lines returned by this property is not guaranteed.

After you get the array of TaxCalculationInputLine objects, for each line item, you can:

■ Use createLine(options) to create the TaxCalculationOutputLine object.

■ Calculate the tax and add the tax detail for each taxation type for the line item. Use
addTaxDetail(options) to add the tax detail for the line item.

■ Add the tax details for the line item to the TaxCalculationOutput object with
addLine(options).

Returns TaxCalculationInputLine[]

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var inputLines = context.input.lines;

 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 // Create the tax line
 var line = inputLines[inputLineIndex];
 var lineReference = line.reference;
 var taxesForLine = context.output.createLine({
 lineReference: lineReference
 });
 // get the line amount
 amount = line.amount;
 // Calculate the tax
 ...
 // add the tax detail to the taxes for the line item
 taxesForLine.addTaxDetail({
 taxCode: taxCode,
 taxationType: taxType,
 taxRate: taxRate,
 taxAmount: taxAmount,
 taxBasis: taxBasis,
 taxCalculationDetail: description
 });

 // add the TaxCalculationOutputLine tax detail to the output object
 output.addLine(taxesForLine);
 ...

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 26

 }

 return {
 calculateTax: calculateTax
 }
}

location

Property Declaration Number location

Type Transaction-level object property

Description Returns the internal NetSuite ID for the Location property associated with the Customer
property of a transaction. You can use this value to load the location record with
record.load(options) and a type value of ‘location’.

Depending on your requirements, you can also use shipFromAddress or shipToAddress.

Use location to load the record with SuiteScript, use the other properties if you want to
use the string value of the address.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var location = input.location;
 var locationObj = record.load({
 type: record.Type.LOCATION,
 id: location
 });
 }

 return {
 calculateTax: calculateTax
 }
}

nexus

Property
Declaration

Number nexus

Type Transaction-level object property

Description Returns the internal NetSuite ID for the nexus on a transaction. When you calculate tax on a
transaction, NetSuite uses the transaction properties to look up the associated nexus for the

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 27

transaction. You can use this value to load the nexus record with record.load(options) and a
type value of ‘nexus’.

You can assign a single plug-in implementation, as a tax engine, to multiple nexuses. You can
then use this property to determine which nexus is associated with the transaction and design
plug-in implementation functionality based on the nexus.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var currNexus = input.nexus
 var nexusObj = record.load({
 type: record.Type.NEXUS,
 id: currNexus
 });
 }

 return {
 calculateTax: calculateTax
 }
}

postingPeriodEndDate

Property Declaration TaxCalculationDate postingPeriodEndDate

Type Transaction-level object property

Description Returns a TaxCalculationDate object that represents the end date for the accounting period
to which the transaction posted.

Use this object to define plug-in implementation functionality based on the accounting
period end date. You can define plug-in implementation functionality based on the values of
the day, month, or year.

Note: This method will be deprecated after Accounting Period records are made
available to SuiteScript.

Returns TaxCalculationDate

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 28

 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var periodEnd = input.postingPeriodEndDate;
 var periodStart = input.postingPeriodStartDate;

 var totalTax = calculateTaxByPeriod(
 periodStart,
 periodEnd
);
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

postingPeriodStartDate

Property Declaration TaxCalculationDate postingPeriodStartDate

Type Transaction-level object property

Description Returns a TaxCalculationDate object that represents the start date for the accounting period
to which the transaction posted.

Use this object to define plug-in implementation functionality based on the accounting
period start date. You can define plug-in implementation functionality based on the values of
the day, month, or year.

Note: This method will be deprecated after Accounting Period records are made
available to SuiteScript.

Returns TaxCalculationDate

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var periodEnd = input.postingPeriodEndDate;
 var periodStart = input.postingPeriodStartDate;

 var totalTax = calculateTaxByPeriod(
 periodStart,

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 29

 periodEnd
);
 ...

 }

 return {
 calculateTax: calculateTax
 }
}

recordType

Parameter
Declaration

String recordType

Type Transaction-level object property

Description Returns the record type for the current transaction. Use this value to define plug-
in implementation functionality based on the type of record passed to the plug-in
implementation. For example, you can calculate taxes differently for sales order transactions
or purchase order transactions.

Note: For more information about the transaction types supported by the plug-in,
see Transaction Types Supported By the SuiteTax Plug-in.

Returns string

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 ...
 var entityType = input.entityType;
 var entityID = input.entity;

 if(input.recordType == 'SalesOrd') {
 var customerRecord = record.load({
 type: entityType,
 id: entityID
 });
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 30

shipFromAddress

Property
Declaration

Address shipFromAddress

Type Transaction-level object property

Description Returns an Address object that represents the ship from address of the current transaction
being processed by the plug-in implementation. See Values on an Address Object for more
information about from where the possible values for this address are sourced, depending on
the transaction type.

This property returns null if there is no shipping address specified.

Use this object, for example, to calculate tax amounts based on the shipping address for
where the transaction originates. You can calculate tax amounts based on the values of the
address, including city, state, zip code, or country.

Note: You can also use location to load the location record for the Customer or
Vendor.

Returns Address | NULL

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...
 var input = context.input;
 var address = input.shipFromAddress;
 var amount = input.subtotal;

 var totalTax = calculateTaxByLocation(
 address.country,
 amount
);
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

shipToAddress

Property
Declaration

Address shipToAddress

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 31

Type Transaction-level object property

Description Returns an Address object that represents the ship to address of the current transaction
being processed by the plug-in implementation. See Values on an Address Object for more
information about from where the possible values for this address are sourced, depending on
the transaction type.

This property returns null if there is no shipping address specified.

Use this object, for example, to calculate tax amounts based on the shipping address for the
destination. You can calculate tax amounts based on the values of the address, including city,
state, zip code, or country.

Returns Address | NULL

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {

 function calculateTax(context){
 ...
 var input = context.input;
 var address = input.shipToAddress;
 var amount = input.subtotal;

 var totalTax = calculateTaxByLocation(
 address.country,
 amount
);
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

subsidiary

Property
Declaration

Number subsidiary

Type Transaction-level object property

Description Returns the internal NetSuite ID of the subsidiary record associated with the current
transaction. The subsidiary is located under Classification on a sales order main page.

Use this property to define plug-in implementation functionality based on the subsidiary. For
example, you can use this ID with the SuiteScript API record.load(options) and subsidiary
record type to access the subsidiary record associated with the transaction.

For more information, see the following topics:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 32

■ record.load(options)

■ SuiteScript Supported Records

Note: For non-One World accounts, this method returns ‘1’.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 ...
 var subsidiaryID = input.subsidiary;
 var subsidiary = record.load({
 type: record.Type.SUBSIDIARY,
 id: subsidiaryID
 });
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

subtotal

Property Declaration String subtotal

Type Transaction-level object property

Description Returns the subtotal for a transaction as a string. The value of the subtotal is calculated by
adding the Amount property of all line items in a transaction. This is the total before any
discounts, shipping cost, or handling cost is added to the transaction.

Use this method to define plug-in implementation functionality based on the total value of all
items in a transaction.

Returns string

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3170023.html

calculateTax(context) 33

 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var totalAmount = input.subtotal + input.discountTotal;
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

taxRegistration

Property Declaration Number taxRegistration

Type Transaction-level object property

Description Returns the internal NetSuite ID for the tax registration number associated with the nexus
for a taxable transaction. Use this property, for example, to check the country of origin for
purchased items on a sales order or invoice.

Note: As of Version 2015 Release 2, the plug-in developer must maintain the
mapping between tax registration IDs and their corresponding values.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 ...
 var taxRegMap = {
 123: 'UK1092108',
 136: 'DE02839892'
 };
 var taxRegNumber = taxRegMap[context.input.taxRegistration];
 if (taxRegNumber.substring(0, 2) == 'DE')
 {
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 34

 }
}

transactionDate

Property Declaration TaxCalculationDate transactionDate

Type Transaction-level object property

Description Returns a TaxCalculationDate object that contains the date value from the transaction
record.

Use this object to define plug-in implementation functionality based on the transaction
date. You can define plug-in implementation functionality based on the values of the day,
month, or year.

Returns TaxCalculationDate

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var transDate = input.transactionDate;
 var address = input.shipToAddress;
 var amount = input.subtotal;

 var totalTax = calculateTaxByLocation(
 address.country,
 amount,
 transDate
);
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

transactionId

Property Declaration Number transactionId

Type Transaction-level object property

Description Returns the NetSuite internal ID for the current transaction.

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 35

Use this property to define plug-in functionality based on the transaction record ID. For
example, you can use this ID with the SuiteScript API record.load(options) to access the
record for the transaction.

This property returns null if the transaction ID does not yet exist, for example, before you
save a transaction for the first time.

Returns number

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 ...
 var transID = input.transactionId;
 var transType = input.recordType;

 var transRec = record.load({
 type: transType,
 id: transID
 });
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

transformationSourceTransactions

Property
Declaration

TaxCalculationInputSourceTransaction[] transformationSourceTransactions

Type Transaction-level object property

Description Returns an array of TaxCalculationInputSourceTransaction objects.

Use this property to define plug-in functionality based on the record or records from which the
current transaction originated. For example, if you created a sales order from an opportunity,
use this property to access the record ID and record type of the opportunity record from the
sales order transaction. You can then use record.load(options) to access the source record for
the current transaction record.

If a transaction has more than one originating transaction, this method returns an array of
TaxCalculationInputSourceTransaction objects, where each object represents one of the source
transactions. The list of source transactions is built using the following sources, in this order:

1. Created From field – This field specifies a single transaction which is used as the source of
all values for the newly created transaction.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 36

2. PO Doc Number field – This field is specific to vendor bills which are created from a single
purchase order.

3. Purchase Orders sublist – This sublist is specific to vendor bills which are created from
one or more purchase orders. In this case, it is possible for the method to return multiple
source transactions.

For example, you create an item fulfillment from a sales order, create an invoice from the item
fulfillment, and then calculate taxes on the invoice. This method returns an array that contains
only one TaxCalculationInputSourceTransaction object which references the sales
order.

If there are no source transactions for the current transaction, this method returns an empty
array.

For information about related transactions in NetSuite, see the help topic Using Transaction
Links.

Returns TaxCalculationInputSourceTransaction[]

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var sourceTrans = input.transformationSourceTransactions;

 if (sourceTrans.length > 0) {
 for (
 var sourceTransIndex = 0;
 sourceTransIndex < sourceTrans.length;
 sourceTransIndex++
)
 {
 currTrans = sourceTrans[sourceTransIndex];
 ...
 }
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

postingTransaction

Property Declaration Boolean postingTransaction

Type Transaction-level object property

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N551392.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N551392.html

calculateTax(context) 37

Description Returns true if the current transaction is a posting transaction. Otherwise, this method
returns false.

For more information about posting transactions versus non-posting transactions in
NetSuite, see the help topic General Ledger Impact of Transactions.

Returns boolean

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 if(input.postingTransaction) {
 ...
 var periodEnd = input.postingPeriodEndDate;
 var periodStart = input.postingPeriodStartDate;

 var totalTax = calculateTaxByPeriod(
 periodStart,
 periodEnd
);
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

preview

Property Declaration Boolean preview

Type Transaction-level object property

Description Returns true if the user clicks the Preview Tax button to trigger the tax calculation.
Otherwise this property returns false, indicating that the user saved the transaction.

Use this property to optimize the tax calculation for a preview of tax details.

Returns boolean

Parent object TaxCalculationInput

Example

/**

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N1459499.html

calculateTax(context) 38

 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 if (input.preview)
 {
 // Calculate taxes for preview
 ...
 }
 else
 {
 // Calculate taxes for final calculation
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

taxOutputOverridden

Property Declaration Boolean taxOutputOverridden

Type Transaction-level object property

Description Returns true if the Tax Details Override field is checked on the Tax Details subtab of a
transaction.

Returns boolean

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 if (context.input.taxOutputOverridden)
 {
 // check that the overridden values are valid, add an error message if not
 verifyOutputOverrideLines(
 context.output.lines,
 context.notifications

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 39

);
 return;
 }
 ...
 // Calculate taxes, add them to the output object
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

taxRegistrationOverridden

Property Declaration Boolean taxRegistrationOverridden

Type Transaction-level object property

Description Returns true if the user overrides the Tax Registration Number field on the Tax Details
subtab of a transaction and selects a value other than what was determined by NetSuite for
the nexus.

Returns boolean

Input Parameters None

Parent object TaxCalculationInput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 if (input.taxRegistrationOverridden)
 {
 // Calculate taxes based for the overridden registration
 ...
 }
 else
 {
 // Use a different method to calculate taxes
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 40

}

TaxCalculationInputLine

Type Object

Description Object that contains the properties of a single line or line item on a taxable transaction. Each
transaction passed to the plug-in implementation has an TaxCalculationInputLine object
associated with it. Use this object to get the details for a specific line item and calculate tax based
on the item properties. Use the TaxCalculationInputLine object methods and properties to
retrieve the line item properties.

Method ■ getAdditionalFieldValue(options)

Properties For Lines:

■ amount

■ amountIncludeTax

■ discounts

■ discountsTotal

■ lineType

■ reference

For lines of type “Item”

■ itemId

■ itemRecordType

■ quantity

■ shipFromAddress

■ shipToAddress

Important: Methods for objects with lineType = “Item” support the itemId,
itemRecordType, quantity, shipFromAddress, and shipToAddress properties. These
methods are not supported for other types of lines such as expenses. You can use the
TaxCalculationInputLine.lineType property to get the line type of the current line
item.

Parent Object TaxCalculationInput

amount

Property Declaration String amount

Type Line-level object property

Description Returns the total amount for a transaction line item, based on the item amount and item
quantity. The value may either be a Net Amount or a Gross Amount, see amountIncludeTax
for details.

Returns string

Parent object TaxCalculationInputLine

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 41

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var totalAmount = 0;
 var inputLines = input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 totalAmount += inputLines[inputLineIndex].amount;
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

amountIncludeTax

Property Declaration Boolean amountIncludeTax

Type Line-level object property

Description Returns true when the amount property represents a Gross Amount, otherwise returns
false when it represents a Net Amount.

Returns Boolean

Parent object TaxCalculationInputLine

Example

/**
* @NApiVersion 2.0
* @NScriptType taxCalculationPlugin
*/
define(['N/record'], function(record) {
 function calculateTax(context) {
 ...
 var lineTaxAmount;
 var taxRate = getTaxRate();

 if (inputLine.amountIncludeTax === true)

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 42

 {
 var lineGrossAmount = inputLine.amount;
 lineTaxAmount = lineGrossAmount - (lineGrossAmount / (1 + taxRate));
 }
 else
 {
 var lineNetAmount = inputLine.amount;
 lineTaxAmount = lineNetAmount * taxRate;
 }
 ...
 }

 function getTaxRate() {
 return 0.15;
 }

 return {
 calculateTax: calculateTax
 }
});

getAdditionalFieldValue(options)

Function
Declaration

String getAdditionalFieldValue(options)

Type Line-level object method

Description Returns the value for the field on the line item passed as an input parameter. The field can be
a standard NetSuite field or a custom field added to the item form. Use this method if you want
to request additional field values sent to the plug-in implementation that are not available in the
methods for TaxCalculationInputLine.

To use this as a parameter, you must complete the following steps:

■ If you want to use a custom field, add the custom field to the item form.

■ Specify the names of the fields that you want NetSuite to pass to the plug-in implementation
using defineAdditionalFields(context).

Returns string

Input Parameters options.fieldId {string} — Field ID of a standard or custom field on the item form.

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var totalAmount = 0;

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 43

 var inputLines = input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 totalAmount += inputLines[inputLineIndex].amount;
 fieldValue = inputLines[inputLineIndex].getAdditionalFieldValue('memo');
 ...
 }
 ...
 }

 function defineAdditionalFields(context){
 context.addField({
 fieldId: 'memo'
 });
 }

 return {
 calculateTax: calculateTax,
 defineAdditionalFields: defineAdditionalFields
 }
}

discounts

Property Declaration TaxCalculationInputDiscountDetail[] discounts

Type Line-level object property

Description Returns an array of TaxCalculationInputDiscountDetail objects.

Returns TaxCalculationInputDiscountDetail[]

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var lines = input.lines;
 for (
 var i = 0;
 i < lines.length;
 i++
)
 {

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 44

 var line = lines[i];
 var discountDetails = line.discounts;
 context.notifications.addNotice('
 Line #'
 + i +
 ' has '
 + discountDetails.length +
 ' discounts for a total of '
 + line.discountsTotal + '
 ' + currencySymbol
);
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

discountsTotal

Property Declaration String discountsTotal

Type Line-level object property

Description Returns the total of all discounts applied to a transaction line as a string.

If there are no discounts applied to a line item, this property returns 0.

Returns string

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var lines = input.lines;
 for (
 var i = 0;
 i < lines.length;
 i++)
 {
 var line = lines[i];
 var discountDetails = line.discounts;
 context.notifications.addNotice(
 'Line #'
 + i +

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 45

 ' has '
 + discountDetails.length +
 ' discounts for a total of '
 + line.discountsTotal + '
 ' + currencySymbol);
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

lineNumber

Property
Declaration

Number lineNumber

Type Line-level object property

Description Returns the line number associated with a line item on a transaction. Each item in
a transaction has an TaxCalculationInputLine object associated with the item. Each
TaxCalculationInputLine object represents a single line item on the transaction. This
method returns the line number for that item. The line number appears on the Tax Detail
subtab of a transaction after you save it for the first time.

Use this property to define plug-in implementation functionality based on the line number
associated with a line item or use the line number for testing or debugging purposes.

Returns number

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var input = context.input;
 ...
 var totalAmount = 0;
 var inputLines = input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 totalAmount += inputLines[inputLineIndex].amount;
 var itemLine = inputLines[inputLineIndex].lineNumber;
 ...
 }

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 46

 ...
 }

 return {
 calculateTax: calculateTax
 }
}

lineType

Property
Declaration

TaxCalculationInputLineType lineType

Type Line-level object property

Description Returns the line type of the current line item on a transaction as a
TaxCalculationInputLineType enum value. Use this property to determine if the current
line item is a NetSuite item type, a shipping or handling line type, or an expense line type and
then calculate tax using the line type.

For more information, see TaxCalculationInputLineType.

Returns string

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 var inputLines = context.input.lines;
 ...
 for (var inputLineKey in inputLines)
 {
 var inputLine = inputLines[inputLineKey];

 if (inputLine.lineType == 'item')
 {
 // Calculate tax for item
 ...
 }
 else if (
 (inputLine.lineType == 'shipping') ||
 (inputLine.lineType == 'handling')
)
 {
 // Calculate tax for shipping / handling
 ...
 }
 ...
 }

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 47

 }

 return {
 calculateTax: calculateTax
 }
});

reference

Property
Declaration

TaxCalculationInputLineReference reference

Type Line-level object property

Description Returns a reference to the line item as a TaxCalculationInputLineReference object.

Use the TaxCalculationInputLineReference object to create an associated tax output
line with createLine(options). You can use the TaxCalculationInputLineReference
object to uniquely refer to the line in a transaction.

Returns TaxCalculationInputLineReference

Parent object TaxCalculationInputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 var inputLines = context.input.lines;
 for (var inputLineKey in inputLines) {
 var inputLine = inputLines[inputLineKey];
 var outputLine = output.createLine({
 lineReference: inputLine.reference
 });
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

itemId

Property Declaration Number itemId

Type Line-level object property

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 48

Description Returns the internal NetSuite ID for a transaction line item. The type of NetSuite record
represented by the ID depends on the TaxCalculationInputLineType for the transaction line
item, returned by lineType.

For a line type of ITEM, this property returns the internal NetSuite ID for an Item record. For
a line type of SHIPPING or HANDLING, the ID represents the shipping method record for the
line item.

You can use this property, for example, with the SuiteScript API record.load(options) to
access the item or shipping method record for the line item.

For more information about item types in NetSuite, see the help topics Using Item Records
and Item Types.

Returns number

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 if (inputLine.lineType == 'item')
 {
 var itemId = inputLineItem.itemId;
 ...
 }
 else if (
 (inputLine.lineType == 'shipping') ||
 (inputLine.lineType == 'handling')
)
 {
 var shippingId = inputLineItem.itemId;
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
});

itemRecordType

Property
Declaration

String itemRecordType

Type Line-level object property

Description Use this property to define plug-in implementation functionality based on the item type
associated with a line item. For example, different item types may require different types

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2164525.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2222944.html

calculateTax(context) 49

of tax calculation methods. Additionally, you can use this property with the item ID and the
SuiteScript API record.load(options) to access the item record for the line item.

For more information about item types in NetSuite, see the help topics Using Item Records and
Item Types.

Important: This item type is not the same type as returned by lineType. In
addition, this method returns a NULL value if you use it on an object with a type other
than ITEM.

Returns string

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 var totalAmount = 0;
 var totalTax = 0;
 var inputLines = context.input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
) {
 var line = inputLines[inputLineIndex];
 totalAmount += line.amount;

 var itemType = line.itemRecordType;
 if (itemType == 'Service') {
 // Calculate tax for services
 totalTax += calculateServiceTax(inputLine);
 } else {
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

quantity

Property Declaration String quantity

Type Line-level object property

Description Use this property to define plug-in implementation functionality based on the quantity
of an item associated with a line item.

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2164525.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2222944.html

calculateTax(context) 50

Important: This method returns a NULL value if used on an object with a
type other than ITEM.

Returns string

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 var totalAmount = 0;
 var inputLines = var context.input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
) {
 var line = inputLines[inputLineIndex];
 var quantity = line.quantity;
 totalAmount += line.amount;
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
}

shipFromAddress

Property Declaration Address shipFromAddress

Type Line-level object property

Description Returns an Address object that represents the ship from address of the current transaction
line item. See Values on an Address Object for more information about from where the
possible values for this address are sourced, depending on the transaction type.

This property returns null if there is no shipping address specified.

Use this object, for example, to calculate tax amounts based on the shipping address for
where the transaction originates. You can calculate tax amounts based on the values of the
address, including city, state, zip code, or country.

Note: You can also use location to load the location record.

Returns Address | NULL

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 51

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 var inputLines = context.input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
) {
 var address = inputLines[inputLineIndex].shipFromAddress;
 var city = address.city;
 var state = address.state;
 var zipCode = address.zip;
 var country = address.country;
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

shipToAddress

Property Declaration Address shipToAddress

Type Line-level object property

Description Returns an Address object that represents the ship to address of the current transaction line
item. See Values on an Address Object for more information about from where the possible
values for this address are sourced, depending on the transaction type.

This property returns null if there is no shipping address specified.

Use this object, for example, to calculate tax amounts based on the shipping address for the
destination. You can calculate tax amounts based on the values of the address, including city,
state, zip code, or country.

Note: You can also use location to load the location record.

Returns Address | NULL

Input Parameters None

Example

/**

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 52

 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 var inputLines = context.input.lines;
 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++) {
 var address = inputLines[inputLineIndex].shipToAddress;
 var city = address.city;
 var state = address.state;
 var zipCode = address.zip;
 var country = address.country;
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

Address

Type Object

Description Container object that contains methods and properties to access addresses.

These include the following types of addresses associated with a transaction:

■ Transaction-level billing addresses. Use TaxCalculationInput.billFromAddress or
TaxCalculationInput.billToAddress.

■ Transaction-level shipping addresses. Use TaxCalculationInput.shipFromAddress or
TaxCalculationInput.shipToAddress.

These include the following types of addresses associated with a line item:

■ Line item-level shipping addresses. Use TaxCalculationInputLine.shipFromAddress or
TaxCalculationInputLine.shipToAddress.

Use the following guidelines with this object:

■ See Values on an Address Object for more information about from where the possible
values for the address are sourced, depending on the transaction type.

■ Each of the methods for the Address object return null if the property is not specified on the
transaction.

■ You can use the getFieldValue(options) method to get the values of standard and
custom address fields. Use the Label property for the custom address field as the
options.fieldName parameter.

For more information about custom address fields, see the help topic Creating Custom
Address Fields.

Parent Object(s) TaxCalculationInput

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4084990241.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4084990241.html

calculateTax(context) 53

The following table describes the methods for the Address object:

Method Description Return Type

addr1 Returns the first line of an address. string | NULL

addr2 Returns the second line of an address. string | NULL

addr3 Returns the third line of an address. string | NULL

addressee Returns the addressee. string | NULL

attention Returns the name of specific person to whom a shipment is
addressed if the Addressee is a Company or Department.

string | NULL

city Returns the city. string | NULL

country Returns the country as a two-digit country code as defined by
ISO 3166-1 alpha-2.

string | NULL

phone Returns the phone number. string | NULL

state Returns the state. string | NULL

zip Returns the Zip Code (Postal Code). string | NULL

getFieldValue(options)

options.fieldName

Returns the value of a standard or custom address field. string | NULL

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 var address;
 ...
 // Get address
 ...
 var city = address.city;
 var state = address.state;
 var zipCode = address.zip;
 var country = address.country;
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationDate

Type Transaction-level Object

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 54

Description Object that represents the date value from the transaction record or the start or end date
value of an accounting period. For example, on a sales order, the transactionDate property
returns an object that represents the Date field on the transaction.

Use this object to define plug-in functionality based on a date. You can define plug-in
implementation functionality based on the values of the day, month, or year. The year is
represented as a 4 digit integer and day and month are two digit integers.

You can access the TaxCalculationDate object with the transactionDate,
postingPeriodStartDate, and postingPeriodEndDate properties.

Parent Object(s) TaxCalculationInput

The following table lists the methods for the TaxCalculationDate object:

Method Return Type

day number

month number

year number

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 var input = context.input;
 ...
 var transDate = input.transactionDate;
 var day = transDate.day;
 var month = transDate.month;
 var year = transDate.year;
 ...
 }

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationInputLineType

Type Line-item level object

Description Object that represents the line type of an TaxCalculationInputLine object. This object has four
enumerated values:

■ ITEM

■ SHIPPING

■ HANDLING

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 55

■ EXPENSE

Use this value to calculate tax differently for different line types. Retrieve this value with lineType.

For example, on Purchase Order and Vendor Bill transactions, a line item on
the transaction may be of type TaxCalculationInputLineType.ITEM or
TaxCalculationInputLineType.EXPENSE. You can use this value to differentiate between
the two types.

Parent Object(s) TaxCalculationInputLine

TaxCalculationInputLineReference

Type Line-item level object

Description Object that identifies an individual input line item on a transaction. Access and use this
reference through the following objects:

■ TaxCalculationInput. Each line item on the input to the SuiteTax calculation plug-in is
represented by this object. Use reference to retrieve a reference to the object.

■ TaxCalculationOutput. When you calculate tax on a transaction, you associate an output tax
line with the input line items. Use createLine(options) to create a new tax line for an input
line item. Also, use inputLineReference to get the reference to an input line associated with
an output tax line through the interface output object.

Methods ■ lineKey

Parent Object(s) TaxCalculationInputLine

lineKey

Function Declaration String lineKey

Type Object property

Description Returns a string that uniquely identifies a TaxCalculationInputLineReference object.

Returns string

Parent object TaxCalculationInputLineReference

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context){
 ...
 lineTaxAmountMap[inputLine.reference.lineKey] = 0;
 ...
 lineTaxAmountMap[outputLine.inputLineReference.lineKey] += lineTaxDetailAmount;
 ...
 for (var lineKey in lineTaxAmountMap)
 {

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 56

 var lineTaxAmount = lineTaxAmount[lineKey];
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationInputSourceTransaction

Type Transaction-level object

Description Object that represents the transaction from which the current transaction being processed by
the plug-in implementation originated.

For example, if you created a sales order from an opportunity, and the current transaction is
the sales order, this object represents the Opportunity record. Use this object to access the
internal NetSuite ID for the source record and the source record type.

For more information, see transformationSourceTransactions.

Methods ■ recordId

■ recordType

Parent Object(s) TaxCalculationInput

Child Object(s) n/a

recordId

Property
Declaration

Number recordId

Type Object property

Description Returns the internal NetSuite ID for a source record represented by a
TaxCalculationInputSourceTransaction object.

Use this property to get properties for the record that originated the current record being
processed by a SuiteTax plug-in implementation. For example, you can use this property and
recordType with the SuiteScript API record.load(options) to access the source record for the
current transaction.

For more information, see transformationSourceTransactions.

Returns number

Parent object TaxCalculationInputSourceTransaction

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 57

 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var sourceTransactions = context.input.transformationSourceTransactions;

 for (
 var i = 0;
 i < sourceTransactions.length;
 i++
) {
 var transaction = sourceTransactions[i];
 var transactionId = transaction.recordId;
 var recordType = transaction.recordType;
 var record = record.load({
 type: recordType,
 id: transactionId
 });
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
}

recordType

Property
Declaration

String recordType

Type Object property

Description Returns the type of a source record represented by a TaxCalculationInputSourceTransaction
object.

Use this property to get properties for the record that originated the current record being
processed by a SuiteTax plug-in implementation. For example, you can use this property and
recordId with the SuiteScript API record.load(options) to access the source record for the
current transaction.

For more information, see transformationSourceTransactions.

Returns string

Parent object TaxCalculationInputSourceTransaction

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var sourceTransactions = context.input.transformationSourceTransactions;

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4267258486.html

calculateTax(context) 58

 for (
 var i = 0;
 i < sourceTransactions.length;
 i++
) {
 var transaction = sourceTransactions[i];
 var transactionId = transaction.recordId;
 var recordType = transaction.recordType;
 var record = record.load({
 type: recordType,
 id: transactionId
 });
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationInputDiscount

Type Transaction-level object

Description Object that represents a discount applied to a transaction.

Methods ■ amount

■ itemId

reference

Parent Object(s) TaxCalculationInput

Child Object(s) ■ TaxCalculationInputDiscountDetail

■ TaxCalculationInputDiscountReference

amount

Property Declaration String amount

Type Transaction-level object property

Description Returns the amount of the discount.

Returns string

Parent object TaxCalculationInputDiscount

Example

/**
 * @NApiVersion 2.0

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 59

 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 ...
 var discounts = context.input.discounts;
 if (discounts)
 {
 for (
 var i = 0;
 i < discounts.length;
 i++
)
 {
 var d = discounts[i];
 context.notifications.addNotice('Discount '' + d.reference + '' '
 + ' with item ID ' + d.itemId + ' has an amount of ' + d.amount);
 }
 }
 }

 return {
 calculateTax: calculateTax
 }
});

itemId

Property Declaration Number itemId

Type Transaction-level object method

Description Returns the internal NetSuite ID for a discount item.

For more information about item types in NetSuite, see the help topics Discount Items
and Creating Item Records.

Returns number

Parent object TaxCalculationInputDiscount

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 ...
 var discounts = context.input.discounts;
 if (discounts)
 {
 for (
 var i = 0;

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2248474.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2166469.html

calculateTax(context) 60

 i < discounts.length;
 i++
)
 {
 var d = discounts[i];
 context.notifications.addNotice('Discount '' + d.reference + '' '
 + ' with item ID ' + d.itemId + 'an amount of ' + d.amount);
 }
 }
 }

 return {
 calculateTax: calculateTax
 }
});

reference

Property Declaration TaxCalculationInputDiscountReference reference

Type Transaction-level object property

Description Returns a reference to a transaction-level discount as a
TaxCalculationInputDiscountReference object.

Returns TaxCalculationInputDiscountReference

Parent object TaxCalculationInputDiscount

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 ...
 var discounts = context.input.discounts;
 if (discounts)
 {
 for (
 var i = 0;
 i < discounts.length;
 i++
)
 {
 var d = discounts[i];
 context.notifications.addNotice('Discount '' + d.reference + '' '
 + ' with item ID ' + d.itemId + ' has an amount of ' + d.amount);
 }
 }
 }

 return {

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 61

 calculateTax: calculateTax
 }
});

TaxCalculationInputDiscountDetail

Type Line-level object

Description Object that represents a discount portion applied to a single line of a transaction.

Methods ■ amount

■ discountReference

Parent Object(s) TaxCalculationInputDiscount

Child Object(s) n/a

amount

Property Declaration String amount

Type Line-level object property

Description Returns the amount of the discount portion applied to a single line of a transaction.

Returns string

Parent object TaxCalculationInputDiscountDetail

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var discounts = input.discounts;
 var discountsMap = {};
 if (discounts)
 {
 for (
 var i = 0;
 i < discounts.length;
 i++)
 {
 var discount = discounts[i];
 discountsMap[discount.reference] = discount; // save the discount by its key
 }
 }
 ...
 var lines = input.lines;

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 62

 for (
 var i = 0;
 i < lines.length;
 i++
)
 {
 var line = lines[i];
 var lineDiscounts = line.discounts;
 for (var j = 0; j < lineDiscounts.length; j++)
 {
 var detail = lineDiscounts[j];
 var discount = discountsMap[detail.discountReference]; // load the 'parent' discount associated
 to this discount detail
 context.notifications.addNotice(
 'Line #'
 + i + '
 has a discount portion '
 + detail.amount +
 ' out of '
 + discount.amount
);
 }
 }

 return {
 calculateTax: calculateTax
 }
});

discountReference

Property Declaration TaxCalculationInputDiscountReference discountReference

Type Line-level object property

Description Returns a reference to the TaxCalculationInputDiscount which this
TaxCalculationInputDiscountDetail is part of.

Returns TaxCalculationInputDiscountReference

Parent object TaxCalculationInputDiscountDetail

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var input = context.input;
 var discounts = input.discounts;
 var discountsMap = {};
 if (discounts)
 {

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 63

 for (
 var i = 0;
 i < discounts.length;
 i++)
 {
 var discount = discounts[i];
 discountsMap[discount.reference] = discount; // save the discount by its key
 }
 }
 ...
 var lines = input.lines;
 for (
 var i = 0;
 i < lines.length;
 i++
)
 {
 var line = lines[i];
 var lineDiscounts = line.discounts;
 for (
 var j = 0;
 j < lineDiscounts.length;
 j++
)
 {
 var detail = lineDiscounts[j];
 var discount = discountsMap[detail.discountReference]; // load the 'parent' discount associated
 to this discount detail
 context.notifications.addNotice(
 'Line #'
 + i + '
 has a discount portion '
 + detail.amount +
 ' out of '
 + discount.amount
);
 }
 }

 return {
 calculateTax: calculateTax
 }
});

TaxCalculationInputDiscountReference

Type Object

Description Object that provides a reference to a TaxCalculationInputDiscount object.

Properties ■ key

Parent Object(s) TaxCalculationInputDiscount

Child Object(s) n/a

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 64

key

Property Declaration String key

Type Object property

Description Returns a string that uniquely identifies a TaxCalculationInputDiscountReference object.

Returns string

Parent object TaxCalculationInputDiscountReference

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var input = context.input;
 // for a transaction with exactly one discount:
 var discount = input.discounts[0];
 ...
 // for a transaction line with discounts applied to it:
 var discountDetail = input.lines()[0].discounts()[0];
 ...
 // discount details and their 'parent' discounts are identified by a matching reference key
 discount.geference.key == discountDetail.giscountReference.key
 ...
 }

 return {
 calculateTax: calculateTax
 }
});
TaxCalculationOutput

TaxCalculationOutput

Type Interface output object

Description Contains all output values produced by the tax calculation performed by a SuiteTax plug-in
implementation.

Properties ■ addLine(options)

■ createLine(options)

■ nexus

■ taxRegistration

■ taxSummaryLines

■ overrideNexus(options)

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 65

■ setTaxSummaryLine(options)

Child Objects ■ TaxCalculationOutputLine

■ TaxCalculationOutputSummaryLine

addLine(options)

Function
Declaration

void addLine(options)

Type Transaction-level object property

Description Adds an TaxCalculationOutputLine object to the TaxCalculationOutput interface output object.
Use this method to add the TaxCalculationOutputLine object to the interface output
object to pass the tax values calculated by the plug-in implementation back to NetSuite. Each
line item on the transaction for which you want to charge taxes must have an associated
TaxCalculationOutputLine object added to the interface output object.

Use createLine(options) to create the TaxCalculationOutputLine object before you add it
to the interface output object.

Returns void

Input Parameters TaxCalculationOutputLine options.outputLine — Object created with
createLine(options) that contains all tax details for a line item on a transaction.

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var input = context.input;
 var inputLines = input.lines;

 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 // create the tax line
 outputLine = output.createLine({lineReference: inputLines[inputLineIndex].reference});
 // get the line amount
 amount = inputLines[inputLineIndex].amount;
 // Calculate the tax

 ...

 // add the tax detail to the taxes for the line item

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 66

 outputLine.addTaxDetail({
 taxCode: taxCode,
 taxationType: taxType,
 taxRate: taxRate,
 taxAmount: taxAmount,
 taxBasis: taxBasis,
 taxCalculationDetail: description
 });

 // add the TaxCalculationOutputLine tax detail to the output object
 output.addLine({outputLine: outputLine});
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
});

createLine(options)

Function
Declaration

TaxCalculationOutputLine createLine(options)

Type Transaction-level object property

Description Creates a TaxCalculationOutputLine object for a specific line item reference. Each line
item on the transaction for which you want to charge taxes must have an associated
TaxCalculationOutputLine object added to the TaxCalculationOutput interface output
object.

If the line does not exist in the TaxCalculationInput interface input object, this method throws
an error.

Returns void

Input Parameters TaxCalculationInputLineReference options.lineReference — Reference to the
corresponding input line for which you want to create an output line and add tax details.

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var input = context.input;
 var inputLines = input.lines;

 for (

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 67

 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 // create the tax line
 outputLine = output.createLine({lineReference: inputLines[inputLineIndex].reference});
 // get the line amount
 amount = inputLines[inputLineIndex].amount;
 // Calculate the tax

 ...

 // add the tax detail to the taxes for the line item
 outputLine.addTaxDetail({
 taxCode: taxCode,
 taxationType: taxType,
 taxRate: taxRate,
 taxAmount: taxAmount,
 taxBasis: taxBasis,
 taxCalculationDetail: description
 });

 // add the TaxCalculationOutputLine tax detail to the output object
 output.addLine({outputLine: outputLine});
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
});

lines

Property
Declaration

TaxCalculationOutputLine[] lines

Type Transaction-level object property

Description Returns an array of TaxCalculationOutputLine objects that you added to the interface output
object with addLine(options). Use this property to access all tax details added to the interface
output object for all line items in the transaction.

This property returns an empty array if no TaxCalculationOutputLine objects exist.

Returns TaxCalculationOutputLine[]

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 68

 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var taxItemLines = context.output.lines;

 for (
 var itemLineTaxIndex = 0;
 itemLineTaxIndex < taxItemLines.length;
 itemLineTaxIndex++
)
 {
 // access all tax details added to transaction
 currentLine = taxItemLines[itemLineTaxIndex].inputLineReference.lineKey;
 }
 }

 return {
 calculateTax: calculateTax
 }
});

nexus

Property
Declaration

Number nexus

Type Transaction-level object property

Description Returns the internal NetSuite ID for the nexus on a transaction. Use this property to access
the actual transaction nexus in the TaxCalculationOutput interface output object.

If the nexus is successfully overridden using the overrideNexus(options) method, this property
returns the same value that was set by the overrideNexus(options) method. Otherwise, this
property returns the same value as the nexus property in the TaxCalculationInput object.

Returns number

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 var deNexus = 7;
 var deTaxCode = 2;
 var deTaxType = 8;

 function calculateTax(context){
 ...

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 69

 var output = context.ouput;
 output.overrideNexus({nexus: deNexus});
 ...
 if (output.nexus == deNexus)
 {
 taxCode = deTaxCode;
 taxType = deTaxType;
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
});

taxRegistration

Property
Declaration

Number taxRegistration

Type Transaction-level object property

Description Returns the internal NetSuite ID for the tax registration number associated with the nexus for
a taxable transaction. Use this property to access the actual tax registration of the transaction
in the TaxCalculationOutput interface output object.

If the nexus is successfully overridden using the overrideNexus(options) method, this property
returns the tax registration for the nexus that was set by the overrideNexus(options) method.
Otherwise, this property returns the same value as the taxRegistration property in the
TaxCalculationInput object.

Returns number

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 var deNexus = 7;
 var deTaxCode = 2;
 var deTaxType = 8;
 var deTaxRegistration = 12;

 function calculateTax(context){
 ...
 var output = context.ouput;
 output.overrideNexus({
 nexus: deNexus
 });
 ...

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 70

 if (output.taxRegistration == deTaxRegistration)
 {
 taxCode = deTaxCode;
 taxType = deTaxType;
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
});

taxSummaryLines

Property
Declaration

TaxCalculationOutputSummaryLine[] taxSummaryLines

Type Transaction-level object property

Description Returns an array of TaxCalculationOutputSummaryLine objects that you added to the interface
output object with setTaxSummaryLine(options). Use this property to access all tax summary
details added to the interface output object for all line items in the transaction.

This property returns an empty array if no TaxCalculationOutputSummaryLine objects
exist.

Returns TaxCalculationOutputSummaryLine[]

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {

 function calculateTax(context){
 ...
 var taxItemSummaryLines = context.output.getTaxSummaryLines();
 var totalTax = 0;
 for (
 var summaryLineIndex = 0;
 summaryLineIndex < taxItemSummaryLines.length;
 summaryLineIndex++
)
 {
 // access tax summary
 totalTax += taxItemSummaryLines[summaryLineIndex].taxTotal;
 }
 ...
 }

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 71

 return {
 calculateTax: calculateTax
 }
});

overrideNexus(options)

Function Declaration void overrideNexus(options)

Type Transaction-level object method

Description Overrides the nexus and sets the corresponding tax registration on the transaction.

This method enables the tax engine to override the original nexus value determined
by NetSuite based on the nexus lookup logic. Only nexuses associated with the plug-in
implementation can be used to override the transaction nexus using this method.

After overriding the nexus using this method, you can use the nexus or taxRegistration
property in the TaxCalculationOutput interface output object to access the final nexus or tax
registration for the transaction.

The tax engine cannot override the nexus if the Override box is checked on the Tax Details
subtab of a transaction.

Returns void

Input Parameters Number options.nexus— Internal NetSuite ID for the new nexus.

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 var deNexus = 7;

 function calculateTax(context){
 ...
 var input = context.input;
 var isDeBillingCountry = input.billToAddress != null && input.billToAddress.country == 'DE';
 if (!input.isTaxRegistrationOverridden && isDeBillingCountry && input.nexus != deNexus)
 {
 context.notifications.addNotice({message: 'Billing address is located in Germany. Changing nexus to
 the same country.'});
 output.overrideNexus({nexus: deNexus});
 }
 ...
 }

 return {
 calculateTax: calculateTax
 }
});

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 72

setTaxSummaryLine(options)

Function
Declaration

void setTaxSummaryLine(options)

Type Transaction-level object method

Description Sets the tax summary line for a transaction. Each transaction for which you charge taxes
contains a summary of the taxes charged for the transaction. This summary is the total taxes on
a transaction for a specific tax code and tax type.

To use this method, first calculate the tax amount for all line items that need to be charged
for a specific tax code and tax type. Then use this method to add the summary to the
TaxCalculationOutput interface output object. The summary total appears in the summary panel
for the transaction in NetSuite.

You must map the tax codes and tax types that you use in the plug-in implementation to the
existing tax types in NetSuite. For example, if a tax type in NetSuite like VAT contains an internal
NetSuite ID of 123, you must use 123 when you add the tax total for VAT to the transaction. For
more information about tax types in NetSuite, see the help topic Tax Types Overview.

This requirement also applies when you add tax detail to a specific line item with
addTaxDetail(options).

If the tax code or tax type does not exist in NetSuite, this method throws an error.

Returns void

Input Parameters ■ options.taxCode — Internal NetSuite ID for the tax code that want to add to a transaction
summary.

■ options.taxType — Internal NetSuite ID for the type of tax you want to add to a
transaction summary.

■ options.taxAmount — Total tax amount for a specific tax type on a transaction.

Parent object TaxCalculationOutput

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 ...
 // Tax Engine private function to calculate VAT taxes
 var vatTaxes = getVATTaxes(context.input.lines);
 var vatTaxType= 123;
 var thisTaxCode = 456;
 context.output.setTaxSummaryLine({
 taxCode: taxCode,
 taxationType: taxationType,
 taxAmount: taxAmount
 });
 ...
 }

 return {
 calculateTax: calculateTax

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1810558.html

calculateTax(context) 73

 }
});

TaxCalculationOutputLine

Type Object

Description Represents all tax details associated with a specific line item in a transaction. Each line
item on the transaction for which you want to charge taxes must have an associated
TaxCalculationOutputLine object.

Use createLine(options) to create the TaxCalculationOutputLine object and then use
addTaxDetail(options) to add the details for each applicable tax type and tax code to the
TaxCalculationOutputLine object.

The tax details for each tax type are represented as a TaxCalculationOutputLineDetail
object. For example, if both GST/HST and PST tax apply to a transaction, each
TaxCalculationOutputLine object requires two TaxCalculationOutputLineDetail
objects, one for each tax type.

After you add tax details for each applicable tax type, use addLine(options) to add the
TaxCalculationOutputLine object to the TaxCalculationOutput interface output object.

Methods and
Properties

■ addTaxDetail(options)

■ taxDetails

■ inputLineReference.

Parent Object(s) TaxCalculationOutput

Child Object(s) TaxCalculationOutputLineDetail

addTaxDetail(options)

Function
Declaration

TaxCalculationOutputLineDetail addTaxDetail(options)

Type Line item-level object method

Description Adds a TaxCalculationOutputLineDetail object to a parent TaxCalculationOutputLine
object. Use createLine(options) to create the TaxCalculationOutputLine object and
then use this method to add the details for each applicable tax type and tax code to the
TaxCalculationOutputLine object.

You must map the tax codes and tax types that you use in the plug-in implementation to the
existing tax codes and tax types in NetSuite. For example, if a tax type in NetSuite like VAT
contains an internal NetSuite ID of 123, you must use 123 when you add the tax total for VAT to
the line item.

To use this method, you must first calculate the tax amount for each applicable tax type and for
each applicable tax code. You must call this method for each relationship between tax types and
tax codes. For example, if a line item requires two tax types, and each tax has two applicable tax
codes, you must call this method four times, one for each combination of tax type and tax code.

This requirement also applies for the tax type when you add a tax summary line to a transaction
with setTaxSummaryLine(options).

If the tax type or tax code does not exist in NetSuite, this method throws an error.

Returns TaxCalculationOutputLineDetail

Input Parameters ■ Number options.taxCode — Internal NetSuite ID for the tax code for which you want to
add tax details to a line item in a transaction.

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 74

■ Number options.taxationType — Internal NetSuite ID for the type of tax you want to
add tax details to a line item in a transaction.

■ String options.taxRate — Tax rate for the tax code of the line item. This rate is
specified by the plug-in implementation and does not reflect the values in the NetSuite UI.

■ String options.taxAmount — Tax amount as a string.

■ String options.taxBasis — Amount of the transaction line item for which tax was
calculated by the plug-in implementation.

■ String options.taxCalculationDetail — String value that provides information to
the NetSuite user on how the plug-in implementation calculated the tax. This is a free-form
string that can contain any string value.

Parent object TaxCalculationOutputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var inputLines = input.lines;

 for (
 var inputLineIndex = 0;
 inputLineIndex < inputLines.length;
 inputLineIndex++
)
 {
 // create the tax line
 outputLine = context.output.createLine({lineReference: inputLines[inputLineIndex].reference});
 // get the line amount
 amount = inputLines[inputLineIndex].amount;
 // Calculate the tax

 ...

 // add the tax detail to the taxes for the line item
 outputLine.addTaxDetail({
 taxCode: taxCode,
 taxationType: taxType,
 taxRate: taxRate,
 taxAmount: taxAmount,
 taxBasis: taxBasis,
 taxCalculationDetail: description
 });

 // add the TaxCalculationOutputLine tax detail to the output object
 output.addLine({outputLine: outputLine});
 ...
 }
 }

 return {
 calculateTax: calculateTax

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 75

 }
});

taxDetails

Property
Declaration

TaxCalculationOutputLineDetail[] taxDetails

Type Line item-level object property

Description Returns the array of TaxCalculationOutputLineDetail objects added to an
TaxCalculationOutputLine object with addTaxDetail(options).

Use this property to get the array of TaxCalculationOutputLineDetail
objects and define plug-in implementation functionality based on the
TaxCalculationOutputLineDetail objects added to the TaxCalculationOutputLine.

This property returns an empty array if no TaxCalculationOutputLineDetail objects are
added.

Returns TaxCalculationOutputLineDetail[]

Input Parameters None

Parent object TaxCalculationOutputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 ...
 var outputLines = context.output.lines;

 for (
 var outputLineIndex = 0;
 outputLineIndex < outputLines.length;
 outputLineIndex++
)
 {
 // get the current tax item line
 var currTaxLine = outputLines[outputLineIndex];
 var taxDetails = currTaxLine.taxDetails;
 for (var taxDetailIndex = 0; taxDetailIndex < taxDetails.length; taxDetailIndex++)
 {
 var taxDetailObj = taxDetails[taxDetailIndex];
 // Process one tax detail line here
 ...
 }
 ...
 }
 }

 return {

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 76

 calculateTax: calculateTax
 }
});

inputLineReference

Property Declaration TaxCalculationInputLineReference inputLineReference

Type Object method

Description Returns a TaxCalculationInputLineReference object for a TaxCalculationOutputLine object.

The returned TaxCalculationInputLineReference object is a reference to the
transaction input line for which you created an output tax line with createLine(options).

Returns TaxCalculationInputLineReference

Parent object TaxCalculationOutputLine

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context){
 var taxItemLines = context.output.lines;

 for (
 var itemLineTaxIndex = 0;
 itemLineTaxIndex < taxItemLines.length;
 itemLineTaxIndex++
)
 {
 // access all tax details added to transaction
 var currentLineRef = taxItemLines[itemLineTaxIndex].inputLineReference.lineKey;
 ...
 }

 }

 return {
 calculateTax: calculateTax
 }
});

TaxCalculationOutputLineDetail

Type Object

Description Object that contains the details for a tax calculation for one tax type and one tax code. Create
this object and add it to TaxCalculationOutputLine with addTaxDetail(options).

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 77

You can get all TaxCalculationOutputLineDetail objects added for a specific line item
in a transaction to TaxCalculationOutputLine TaxCalculationOutputLine with taxDetails.

Parent Object(s) TaxCalculationOutputLine

Child Object(s) n/a

The following table describes the properties you use to access TaxCalculationOutputLineDetail
object properties:

Property Return Value Description

String taxAmount string Amount of tax for the tax type and tax code.

Number taxationType number Internal NetSuite ID for the type of tax associated with the tax details.

String taxBasis string Amount of the transaction line item to which tax was applied by the
plug-in implementation.

String taxCalculationDetail string String value that provides information to the NetSuite user on how
the plug-in implementation calculated the tax. This is a free-form
string that can contain any string value.

Number taxCode number Internal NetSuite ID for the tax code associated with the tax details.

String taxRate string Tax rate for the tax code of the line item. This rate is specified by
the plug-in implementation and does not reflect the values in the
NetSuite UI.

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 var outputLines = context.output.lines;

 for (var outputLineIndex = 0; outputLineIndex < outputLines.length; outputLineIndex++) {
 // get the current tax item line
 var currTaxLine = outputLines[outputLineIndex];
 var taxDetails = currTaxLine.taxDetails;
 for (var taxDetailIndex = 0; taxDetailIndex < taxDetails.length; taxDetailIndex++) {
 var taxDetail = taxDetails[taxDetailIndex];
 var thisTaxType = taxDetail.taxType;
 var thisTaxCode = taxDetail.taxCode;
 var thisTaxAmount = taxDetail.taxAmount;
 var thisTaxBasis = taxDetail.taxBasis;
 var thisTaxRate = taxDetail.taxRate;
 var thisTaxDetail = taxDetail.taxCalculationDetail;

 // process one tax detail line here
 ...
 }
 }
 }

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 78

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationOutputSummaryLine

Type Object

Description Contains the total of taxes on a transaction for a specific tax type. The values for this object are
passed back to NetSuite by the plug-in implementation and appear in the summary panel for a
transaction.

This object has the following properties that you can access with the
TaxCalculationOutputSummaryLine properties:

■ Tax code. Internal NetSuite ID for the tax code.

■ Tax type. Internal NetSuite ID for the type of tax.

■ Tax amount. Total amount of the tax type calculated for the transaction.

After you calculate the total taxes for a tax type for a transaction, use
setTaxSummaryLine(options) to create this object. Use taxSummaryLines to get an array
that represents all the TaxCalculationOutputSummaryLine objects created with
setTaxSummaryLine(options).

Methods ■ taxType

■ TaxTotal

Parent Object(s) TaxCalculationOutput

Child Object(s) n/a

The following table describes the methods you use to access TaxCalculationOutputSummaryLine
object properties:

Property Return Value Description

Number taxationType number Internal NetSuite ID for the type of tax.

Number taxCode number Internal NetSuite ID for the tax code.

String taxTotal string Amount of tax for the tax code and tax type.

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 var output = context.output;

 // get summary of all tax types and amounts applicable to this transaction
 var allSummaryLines = out.taxSummaryLine;

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 79

 for (var summaryIndex = 0; summaryIndex < allSummaryLines.length; summaryIndex++)
 {
 var thisTaxSummary = allSummaryLines[summaryIndex];

 var thisTaxCode = thisTaxSummary.taxCode;
 var thisTaxType = thisTaxSummary.type;
 var thisTaxAmount = thisTaxSummary.taxAmount;
 ...
 }
 }

 return {
 calculateTax: calculateTax
 }
}

TaxCalculationNotificationList

Type Interface object

Description Object that contains methods to add notifications to a transaction during tax calculation by a
SuiteTax plug-in implementation. NetSuite displays the notifications at the top of the NetSuite
window when the plug-in implementation calls one of the notification methods.

Each of the methods takes a string as an input parameter that you can use to display
information to NetSuite users.

Methods See TaxCalculationNotificationList Property or Methods.

Parent Object(s) n/a

Child Object(s) n/a

TaxCalculationNotificationList Property or Methods

The following table lists the methods available to the TaxCalculationNotificationList object:

Property or Method Declaration Description

String locale Returns the locale of the current browser window as a string, for example,
en_US. Use this method to display notifications specific to the browser
locale.

void addError(options) Displays the error message string in the browser. In addition, using this
method returns the user to the transaction in edit mode, to allow the user
to fix the error. You cannot save the transaction until the error is corrected.

void addWarning(options) Displays the warning message string in the browser. The plug-in
implementation completes the tax calculation and NetSuite saves the
transaction.

Use this method to display potential issues or non-fatal errors to the
NetSuite users.

void addNotice(options) Displays the notice message string in the browser. The plug-in
implementation completes the tax calculation and NetSuite saves the
transaction.

SuiteTax Plug-In for SuiteScript 2.0

calculateTax(context) 80

Property or Method Declaration Description
Use this method to display informative information to the NetSuite user.

String options.message Used with the methods in this table to add a text message to the error.

Note: There is no functional difference between addWarning(options) and
addNotice(options). Each message appears with a different label in the browser to
differentiate between the two types.

TaxCalculationNotificationList Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['R/runtime'], function(runtime) {
 function calculateTax(context) {
 ...
 var account = runtime.accountId;
 ...
 context.notifications.addNotice(account + 'running Awesome Tax Calculation Engine 9000.');
 ...
 }

 return {
 calculateTax: calculateTax,
 onTransactionEvent: onTransactionEvent
 }
}

TaxCalculationNotificationList User Interface Example

The following screenshot shows how notifications appear to users during the execution of a SuiteTax
plug-in implementation:

SuiteTax Plug-In for SuiteScript 2.0

defineAdditionalFields(context) 81

defineAdditionalFields(context)

Function
Declaration

void defineAdditionalFields(context)

Type Interface function

Description Defines the additional fields on a transaction that NetSuite passes to the plug-in implementation.
The fields can be standard NetSuite fields or custom fields added to the record form for the
transaction type. Use this function to pass additional field values to the plug-in implementation
that are not supported by the methods available to the TaxCalculationInput interface input
object. Use the field values to define additional plug-in implementation functionality for tax
calculation on the transaction.

For example, you can add a custom field named Memo to a sales order record form. Then, use
the context.addField(options) addSublistField method to specify that NetSuite passes the value of
the Memo custom field to the plug-in implementation.

After you define the field names with this function, use getAdditionalFieldValue(options) in the
calculateTax(context) interface function to get the field value.

You cannot use this function to define any fields that do not exist on the form for the transaction
type.

You can also use this function to pass additional line-item field values to the plug-in
implementation that are not supported by the methods available to the TaxCalculationInputLine
object.

For example, you can add a custom field named Price to an item record form. Then, use the
context.addSublistField(options) method to specify that NetSuite passes the value of the Price
custom field to the plug-in implementation.

After you define the field names with this function, use
TaxCalculationInputLine.getAdditionalFieldValue(options) in the calculateTax(context) interface
function to get the field value.

Note: Updating the value of the fields declared in this function resets the values on
the Tax Details subtab of the transaction.

Returns void

Parameters AdditionalFieldsContext

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 }

 function defineAdditionalFields(context) {
 context.addField({fieldId: 'memo'});
 context.addSublistField({
 sublistId: 'item',
 fieldId: 'description'

SuiteTax Plug-In for SuiteScript 2.0

defineAdditionalFields(context) 82

 });
 }

 return {
 calculateTax: calculateTax,
 defineAdditionalFields: defineAdditionalFields
 }
}

AdditionalFieldsContext

Type Parameter object

Description With this object, you can call the addField and addSublist fields to request additional
parameters.

addField

Function Declaration context.addField(options)

Type Parameter object method

Description Adds a transaction-level field to the list of additional fields requested by the tax
calculation plugin.

Input Parameters object options

string options.fieldID — ID of the field to add

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 }

 function defineAdditionalFields(context) {
 context.addField({fieldId: 'memo'});
 context.addSublistField({
 sublistId: 'item',
 fieldId: 'description'
 });
 }

 return {
 calculateTax: calculateTax,
 defineAdditionalFields: defineAdditionalFields
 }
});

SuiteTax Plug-In for SuiteScript 2.0

defineAdditionalFields(context) 83

addSublistField

Function Declaration context.addSublistField(options)

Type Parameter object method

Description Adds a line-level field to the list of additional line fields requested by the tax calculation
plugin.

Returns void

Input Parameters object options

string options.fieldID — ID of the sublist field to add

string options.sublistID— ID of the sublist containing the field

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define([], function() {
 function calculateTax(context) {
 ...
 }

 function defineAdditionalFields(context) {
 context.addField({fieldId: 'memo'});
 context.addSublistField({
 sublistId: 'item',
 fieldId: 'description'
 });
 }

 return {
 calculateTax: calculateTax,
 defineAdditionalFields: defineAdditionalFields
 }
});

onTransactionEvent(context)
Property
Declaration

void onTransactionEvent(context)

Type Interface function

Description Defines the functionality for a SuiteTax plug-in implementation when specific events occur on
the transaction record. You can define plug-in functionality for when a user voids or deletes a
transaction.

This function is called whenever a user performs one of the supported event actions on the
record type for the SuiteTax plug-in implementation. The plug-in implementation executes the
logic in the function after the system performs the void or delete action. The purpose of this

SuiteTax Plug-In for SuiteScript 2.0

onTransactionEvent(context) 84

function is informational only. Potential errors thrown within this function do not affect the
voiding or deletion in any way.

String literals on the TransactionEventCode object (accessible through TransactionEvent) define
the supported events.

Use the methods available to the TaxCalculationInput object to get information about the
transaction and use TransactionEvent to get the type of event that occurred.

Note: This function is not called when a user clicks Preview Tax on a supported
taxable transaction. In addition, while the function must be declared in the plug-in
implementation script file, it is optional to include any logic for it.

Returns void

Parameters TaxCalculationinput context.input

TransactionEvent context.event

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context) {
 ...
 }

 function onTransactionEvent(context) {
 var input = context.input;
 var entity = record.load({type: input.entityType, id: input.entity});
 ...
 entity.submit();
 }

 return {
 calculateTax: calculateTax,
 onTransactionEvent: onTransactionEvent
 }
});
TransactionEvent

TransactionEvent

Type Interface object

Description Contains the property to access the event code for when a supported taxable transaction is
voided or deleted.

Properties ■ code

Parent Object(s) n/a

Child Object(s) TransactionEventCode

SuiteTax Plug-In for SuiteScript 2.0

onTransactionEvent(context) 85

code

Function Declaration TransactionEventCode code

Type Object property

Description Returns the TransactionEventCode object. Use this property to determine if a
transaction was voided or deleted.

Returns TransactionEventCode

Parent object TransactionEvent

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context) {
 ...
 }

 function onTransactionEvent(context) {
 ...
 var event = context.event.code;

 if (event == 'void') // transaction was voided
 {
 ...
 }
 else if (event == 'delete') // transaction was deleted
 {
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax,
 onTransactionEvent: onTransactionEvent
 }
});

TransactionEventCode

Type Object

Description Object that represents the event type of a TransactionEvent object. This object has two
enumerated values:

■ “DELETE”

■ “VOID”

SuiteTax Plug-In for SuiteScript 2.0

onTransactionEvent(context) 86

Use this value to determine the type of event that occurred to trigger the
onTransactionEvent(context) interface function. The interface function is called on all of the
event types and executed before the NetSuite functionality that triggered the function.

Methods None

Parent Object(s) TransactionEvent

Child Object(s) n/a

Example

/**
 * @NApiVersion 2.0
 * @NScriptType taxCalculationPlugin
 */
define(['N/record'], function(record) {
 function calculateTax(context) {
 ...
 }

 function onTransactionEvent(context) {
 ...
 var event = context.event.code;

 if (event == 'void') // transaction was voided
 {
 ...
 }
 else if (event == 'delete') // transaction was deleted
 {
 ...
 }
 ...
 }

 return {
 calculateTax: calculateTax,
 onTransactionEvent: onTransactionEvent
 }
});

SuiteTax Plug-In for SuiteScript 2.0

SuiteTax Plug-in Reference 87

SuiteTax Plug-in Reference
Use the information in this section as reference when you develop, run, and test a SuiteTax plug-in
implementation.

SuiteTax Plug-in Guidelines and Best Practices
Use the best practices in the following table when you develop a plug-in implementation for the SuiteTax
plug-in:

Guideline/Best Practice Description

Group custom fields If the SuiteTax solution requires custom fields on NetSuite records
to collect information relevant to tax calculation, make sure you
include the fields where they are most useful.

For example, you can create a subtab specifically to group custom
fields relevant to tax calculation, instead of on the main tab for the
record.

In general, make sure custom fields do not appear significant to
users for whom they are not applicable.

Centralize tax engine configuration If your SuiteTax solution makes use of, for example, custom
records to track configurations for the tax engine, group those
configurations together on a single page in NetSuite.

Grouping configurations in this manner increases usability;
administrators can complete all necessary configurations in a single
location.

Minimize plug-in execution time You should optimize the performance of the plug-in
implementation to return tax calculation results within 10
seconds. This includes the amount of time required for the plug-
in implementation to contact any third-party site that returns tax
calculation information back to NetSuite.

A longer period of time negatively impacts user experience with the
plug-in implementation performance.

Include tax configuration in plug-in
implementation bundle

Any dependent records or objects required by the implementation
should be included in the bundle, or created by a bundle
installation script file.

You should not require administrators to perform manual
configuration after installation of the plug-in implementation
bundle.

For more information about installation script files, see the help
topic Bundle Installation Scripts.

Limit creation of custom records by plug-in
implementation

If possible, you should not create records or perform other
complex data processing operations in the plug-in implementation
script file.

In addition, where possible, you should limit the use of SuiteScript
APIs that load records, to improve performance of the plug-in
implementation. In general, searching for NetSuite records yields
better performance than loading records.

Use TaxCalculationNotificationList You should use the TaxCalculationNotificationList object and its
related methods to display the following information to the user:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2993460.html

SuiteTax Plug-in Guidelines and Best Practices 88

Guideline/Best Practice Description
■ Errors or warnings produced by the plug-in implementation

■ Information about how tax was calculated

Note: You can use the locale property to display
messages that match the user locale.

Log plug-in execution to the plug-in
implementation

Use the N/log Module to send details to the Execution Log tab of
the plug-in implementation object.

Properly display provider-specific information If you want to display logos or custom fields, make sure that
the associated plug-in functionality only displays the custom
information on the correct records.

For example, if the plug-in does not calculate tax for specific types
of transactions, make sure that any information displayed by the
plug-in implementation does not appear on those transactions.

Persist only final tax details You can pass transaction details to a third-party tax system for tax
calculation purposes. However, you should not save tax details
generated from the following events:

■ The Preview Taxes button is clicked on a transaction

■ Tax details are from unapproved or non-posting transactions

You can use the postingTransaction or preview methods to
determine if the tax details should be saved on the remote system.

Provide additional information about the tax
calculation on the Details column on the Tax
Details subtab for the transaction

The addTaxDetail(options) method includes the taxCalculationDetail
parameter. You can use this parameter to pass a free-form string
value back to the transaction.

This string value appears on the Tax Details subtab for the
transaction, in the Details column.

Rounding of tax details and summary amounts Make sure that the tax calculations performed by the SuiteTax plug-
in implementation round tax results to two decimal places. If a tax
value is greater than two decimal places, NetSuite truncates the
amount to two, but does not round.

Create custom role for Execute as Role plug-in
implementation property

The Execute as Role property determines the role that the plug-in
implementation executes on.

You should create a custom role that has the appropriate level of
permissions needed to function correctly.

Important: Either do not select any subsidiaries in
the Subsidiaries field for the Role record, or select all
subsidiaries where the tax engine that represents the
plug-in implementation can be selected.

Values on an Address Object
The Address object is returned by the billFromAddress, billToAddress, shipFromAddress, and
shipToAddress methods on the TaxCalculationInput object, and by the shipFromAddress and
shipToAddress methods on a in a SuiteTax plug-in implementation.

The source for an Address object values is different for sales transactions and purchase transactions. See
the following tables for details:

SuiteTax Plug-In for SuiteScript 2.0

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4574548135.html

Values on an Address Object 89

Address Type Sales Transactions Address Sourcing

Bill From Subsidiary record

■ Main address

Bill To Customer record

■ Default billing address is preselected.

■ User can override this address.

Ship From — Transaction-Level Ship From address sourcing is per transaction:

■ If a location is entered for a transaction:

□ If the location has an address, use this address.

□ If the location does not have an address, return null.

■ If a location is not entered for a transaction, source the address from the
subsidiary:

□ If the subsidiary has a shipping address, use this address.

□ If the subsidiary does not have a shipping address, use its main
address.

Ship From — Line Level Ship From address sourcing is per line item:

■ If a location is entered for a line item:

□ If the location has an address, use this address.

□ If the location does not have an address, return null.

■ If a location is not entered for a line item, use the transaction-level Ship
From address.

Important: Line-level locations override transaction-level
address information.

Ship To — Transaction Level If Enable Line Item Shipping is not checked, transaction-level address is
sourced from the customer record.

■ Default shipping address is preselected.

■ User can override this address.

Otherwise, null is returned.

Ship To — Line Level If Enable Line Item Shipping is checked, line-level addresses are sourced
from the customer record.

■ Default shipping address is preselected.

■ User can override this address on each line.

Otherwise, null is returned.

Address Type Purchase Transactions Address Sourcing

Bill From Vendor record

■ Default billing address is preselected.

■ User can override this address.

Bill To Subsidiary record

SuiteTax Plug-In for SuiteScript 2.0

Values on an Address Object 90

■ Main address

Ship From Vendor record

■ Default shipping address is preselected.

■ User can override this address.

Note: TaxCalculationInputLine.shipFromAddress always returns null.

Ship To — Transaction-Level Ship To address sourcing is per transaction:

■ If a user has entered a Ship To Select address for the transaction, this address is
used.

□ For drop-ship transactions, the customer’s address may be available for
selection as a Ship To address.

■ If a user has not entered a Ship To Select address for the transaction, and:

□ If a location is entered for a transaction:

▬ If the location has an address, use this address.

▬ If the location does not have an address, return null.

□ If a location is not entered for a transaction, source the address from the
subsidiary:

▬ If the subsidiary has a shipping address, use this address.

▬ If the subsidiary does not have a shipping address, use its main address.

Ship To — Line-Level Ship To address sourcing is per line item:

■ If a user has entered both a Ship To customer and a Ship To Select address for
the transaction, that address is used.

■ If a user has not entered a Ship To customer or a Ship To Select address for the
transaction:

□ If a location is entered for a line item:

▬ If the location has an address, use this address.

▬ If the location does not have an address, return null.

□ If a location is not entered for a line item, use the transaction-level Ship To
address.

Important: Line-level locations override transaction-level address
information, except in the case of drop-ship, where line-level locations are
ignored.

SuiteTax Plug-In for SuiteScript 2.0

	Table of Contents
	SuiteTax Plug-in Overview
	SuiteTax Plug-in Features in NetSuite
	Developing a SuiteTax Plug-in Implementation
	Create or Set Up Required Objects
	Create the Plug-in Implementation Script File
	Add the Plug-in Implementation
	Test the Plug-in Implementation
	Bundle the Plug-in Implementation

	Administering a SuiteTax Plug-in Implementation
	Enable Features for a SuiteTax Plug-in Implementation
	Install a SuiteTax Plug-in Bundle
	Enable the SuiteTax Plug-in Implementation
	Configure the Tax Engine for Nexuses

	SuiteTax Plug-In Interface Definition
	calculateTax(context)
	TaxCalculationInput
	TaxCalculationInputLine
	Address
	TaxCalculationDate
	TaxCalculationInputLineType
	TaxCalculationInputLineReference
	TaxCalculationInputSourceTransaction
	TaxCalculationInputDiscount
	TaxCalculationInputDiscountDetail
	TaxCalculationInputDiscountReference

	TaxCalculationOutput
	TaxCalculationOutputLine
	TaxCalculationOutputLineDetail
	TaxCalculationOutputSummaryLine

	TaxCalculationNotificationList

	defineAdditionalFields(context)
	AdditionalFieldsContext

	onTransactionEvent(context)
	TransactionEvent
	TransactionEventCode

	SuiteTax Plug-in Reference
	SuiteTax Plug-in Guidelines and Best Practices
	Values on an Address Object

