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Norms reminder

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise in Zoom to ask a question
Slack
● Use threads
● Emoji responses 🙂
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104 - Work pool-based 
deployments 
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104 Agenda

- Create work pool-based deployments with 
.deploy()

- Flow code storage
- Prefect managed work pools
- Hybrid work pools with workers
- Push work pools
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Why use a work pool-based deployment?

Infrastructure is a pain, Prefect makes it better. 🙂
- Run a deployment on a variety of infrastructure 
- Provide a template for deployments 
- Ability to prioritize work
- Options to scale infrastructure to 0 (serverless)
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Create deployment with .deploy()

Very similar syntax to .serve()

Differences: 
- need to specify a work pool
- doesn’t start a server
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First work pool-based deployment

- create with .deploy() 
- specify flow code stored in a GitHub repository
- specify an existing Prefect Managed workpool 
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Create deployment with .deploy()
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Create deployment with .deploy()

Run the script
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Create a deployment with .deploy()

Run the deployment from the UI or the CLI:

prefect deployment run 
'pipeline/my-first-managed-deployment'

Takes a moment to start infra and pull base Docker image 
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See the deployment and flow run in the UI
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Let’s break this down
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Flow code 
storage
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14

1. Git-based remote repository (e.g. GitHub)
2. Bake your code into a Docker image
3. Cloud provider storage

We specified a public GitHub repo with .from_source() 
class method. 

Provide the source URL to the repo and the entrypoint 
path:flow function name.

Flow code storage options



Work pools 
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Provide default infrastructure configuration for deployments

Work pools



Create a work pool of type Prefect Managed

With a Prefect Managed pool, Prefect runs your flow 
code on our infrastructure in a Docker container.

👆Only available with Prefect Cloud
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Create a Prefect Managed work pool
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Create a Prefect Managed work pool

- Don’t modify the job template for now
- You can specify environment variables, 

packages to install at runtime, etc.
- All deployments that use this work pool inherit 

these settings
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At runtime, Prefect:

1. Pulls the Docker image specified
2. Installs any specified packages
3. Pulls your flow code from GitHub
4. Runs your code in the container
5. Monitors state
6. Exits and cleans up 🧹
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Hybrid model - hybrid 
work pools with workers
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Hybrid model = separation

- Your flow code runs on your infrastructure
- Your flow code is stored on your storage (GitHub, 

AWS, Docker image, etc)
- Prefect Cloud stores metadata, logs, artifacts, etc.
- Data encrypted at rest
- Prefect Technologies, Inc. is SOC2 Type II compliant

https://www.prefect.io/security
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Hybrid model

-
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Workers
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- Long-running process on the client
- Poll for scheduled flow runs from work pools
- Must match a work pool to pick up work

Workers
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Work Pools
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Docker work pool & 
worker 
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Why use Docker?

- Same operating environment everywhere
- Lighter weight than a VM
- Linux (generally)
- Portable
- Very popular
- Almost all Prefect work pools use it
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Docker work pool 

Run a flow in a Docker container

1. Install: pip install -U prefect-docker 
2. Start Docker on your machine
3. Create a Docker type work pool 
4. Start a worker that polls the work pool
5. Create a deployment that specifies the work pool
6. Run the deployment
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Create a Docker work pool
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Package flow code into a Docker image with .deploy()

.from_source() method not needed if baking flow code into image
31



.deploy() method

Creates a Docker image with your flow code baked in 
by default!

- specify the image name
- specify push=False to not push image to registry
- can create a requirements.txt file with packages to 

install into the image (or add package names to 
work pool or at deployment creation time)
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Docker type worker 

Start a Docker type worker to connect to a work pool 
named my-docker-pool

prefect worker start -p my-docker-pool
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Dockerfile used to create your image (under the hood) 
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Docker

- Prefect provides base Docker images
- Can customize base image
- Read about choosing images at 

docs.prefect.io/concepts/infrastructure/#standard-python
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Docker

- Run your deployment
- Worker pulls image and spins up Docker container 
- Flow code runs in Docker container and exits 🚀
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Docker

See container in Docker Desktop if running locally
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Docker

Prerequisites reminder:

- Docker installed & running 
- prefect-docker package installed
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http://docs.docker.com/desktop/
https://prefecthq.github.io/prefect-docker/


Hybrid work pool types

1. Kubernetes 
2. Docker
3. Serverless options such as ECS, ACI, GCR, 

VertexAI
4. Process (local subprocess)

* Worker required for all
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Process hybrid work pool with Prefect Cloud example 
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Push work pools
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Push work pools

Serverless options with no worker required

Options:

- AWS ECS, Google Cloud Run, Azure Container 
Instances

Create from CLI:
prefect work-pool create --type modal:push --provision-infra my-modal-pool 
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Push work pools

Prefect will create everything for you with --provision-infra 

Prerequisites to use: 

- Cloud provider account
- CLI tool installed
- Authenticated locally

prefect work-pool create --type modal:push --provision-infra my-modal-pool 
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What’s a work queue for?

- Prioritize work
- Limit concurrent runs

⚠ default work queue created automatically
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Pause work pools or work queues  
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104 Recap

You’ve seen how to
- Create work-pool based deployments! 🎉
- Create a deployment that uses a Prefect managed 

work pool and flow code stored on GitHub
- Use the hybrid model with workers
- Bake flow code into Docker images
- Create push work pools with a single command
- Pause and resume work pools and work queues
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Lab 104
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Reminder: breakout room norms

1. 🙂 Introduce yourselves 
2. 🎥 Camera on (if possible) 
3. 💻 One person shares screen
4. 󰳕 Everyone codes
5. 🙋 Each person talks
6. 😌 Low-pressure, welcoming environment: lean in

Breakout rooms with lots of participation = 
more fun + more learning! 😎
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104 Lab

- Create a Prefect Managed work pool.
- Create and run a deployment that uses the work pool. 
- Use flow code stored in your own GitHub repository with 

a deployment.
- Pause and resume the work pool from the UI.
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104 Lab Extensions

- Stretch 1: bake your flow code into a Docker image with .deploy(). 
- Don’t push the image to a remote repository (or do log in and push it 

to DockerHub). 

Don’t forget to:
- Start Docker on your machine
- pip install -U prefect-docker
- Make a Docker work pool 
- Start a Docker type worker that polls the pool

- Stretch 2: create a push work pool with provision-infra and use it in a 
deployment.

- Stretch 3: add an environment variable to a work pool and use it.
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Lab 104: a solution

One person from each group, share your code in 
Slack 🧵
Discuss

Questions?
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?
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105 - Interactive workflows & 
incidents
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105 Agenda

- Interactive workflows
- Human in the loop 

- Incidents
- Metric triggers
- Prefect Runtime
- State change hooks
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Interactive workflows
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Interactive workflows

Pause a flow run to wait for input from a user via a 
web form (human-in-the-loop) 🙂
pause_flow_run function
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Human-in-the-loop: basic
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Human-in-the-loop: basic
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Human-in-the-loop: basic
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Human-in-the-loop: basic
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Human-in-the-loop

- For validation: can use RunInput class, which is a 
subclass of Pydantic’s BaseModel class

- Able to specify a default value or create a 
dropdown

- Can create a default value at runtime 
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Human-in-the-loop: default value
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Human-in-the-loop: default value
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Human-in-the-loop: custom validation
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Human-in-the-loop: custom validation
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Human-in-the-loop: custom validation
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Human-in-the-loop: custom validation
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Incidents 🚨
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Incidents 

Formal declarations of disruptions to a workspace 
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Incidents 

- visible workspace-wide
- keeps team updated for faster resolution
- creates record for analysis and compliance 
- Custom plan tier only
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Incidents 

Declare an incident manually or automatically through 
an automation when an event occurs 
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Metric triggers
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Metric triggers

Create an automation that uses a metric as a trigger
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Metric triggers

When a pattern is detected, then take an action 

- send a notification
- toggle on a work pool
- create an incident
- run a deployment
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Other trigger types

- can use status of many 
Prefect objects as triggers

- incidents can act as a 
trigger
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prefect.runtime
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Module for runtime context access. 

Useful for labeling, logs, etc.

Includes:

- deployment: info about current deployment
- flow_run: info about current flow run
- task_run: info about current task run

77

prefect.runtime 
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prefect.runtime



Useful for labeling, logs, etc.

79

prefect.runtime



State change hooks
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State change hooks

Execute code in response to flow run or task run state 
changes
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State change hooks
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State change hooks
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105 Recap

You’ve seen how to:

- Create an interactive workflow that pauses a 
flow run for input from a user

- Use a metric trigger in an automation
- Get current info into a flow with prefect_runtime
- Use a state change hook
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Lab 105
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105 Lab

- Create an interactive workflow that pauses a flow 
run for input from a user. 

- Print the flow run name in your code with 
prefect_runtime

- Use a state change hook to run code when a flow 
run state is reached.

- Stretch1: Use a metric trigger in an automation.
- Stretch2: Check out the send and receive input 

examples in the course repo for the module 
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Lab 105: a solution

One person from each group, share your code in 
Slack 🧵
Discuss

Questions?
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?
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106 - Workflow patterns & 
event-based workflows
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106 Agenda

Workflow patterns with 

- subflows 
- run_deployment
- automations

Automation triggers

- custom events
- webhooks
- deployment triggers
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Workflow patterns
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Workflow patterns - prefect.io/blog/workflow-design-patterns

Flow of deployments Event triggered flow

Monoflow

92

Flow of subflows

https://www.prefect.io/blog/workflow-design-patterns


You have seen this pattern

Flow of deployments Event triggered flow

Monoflow

93

Flow of subflows



Subflows
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Workflow patterns - Flow of subflows

Flow of deployments Event triggered flow

Monoflow

95

Flow of subflows



Subflow

- A flow that calls another flow
- Useful for grouping related tasks
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Subflows
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Timeline view 
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run_deployment
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Workflow patterns - Flow of deployments (run_deployment)

Flow of deployments Event triggered flow

Monoflow
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Flow of subflows



run_deployment
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run_deployment
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run_deployment
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Event-triggered 
workflows
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Workflow patterns - Event-triggered 

Flow of deployments Event-triggered flow

Monoflow

105

Flow of subflows



Custom events in 
Python

106



Custom events

Great when working in Python land and want to get 
data into an automation 🐍
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Create custom event to be emitted when code runs

emit_event must provide two args: event and 

resource= {“prefect.resource.id: val”}
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Run code and head to the Event Feed page

Click link to see event page
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See event details on the Raw tab
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Data from event can be used in an automation action

For example: Populate a flow param via a Run 
Deployment action

Use emit_event’s payload parameter 
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Example: custom event with detailed payload
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Event webhooks 🕸🪝
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Event webhooks

- expose a URL endpoint
- provides consistent interface for integrating 

external applications with Prefect
- when webhook URL is pinged, creates a Prefect 

event - can be used as a trigger in an automation
- great when not in Python land
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Event webhooks
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Event webhooks

- use Jinja2 for dynamic templating
- template should be valid JSON
- create from UI or CLI 
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Event webhooks

Hit the endpoint provided by Prefect:

curl https://api.prefect.cloud/hooks/your_slug_here
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Event webhooks

See the event that is created under Event Feed in the 
UI
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Event webhooks

⚡ Use this event as a custom trigger in an automation! 
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Composite triggers
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Composite triggers
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Composite triggers

An automation trigger made of more than one event

Compound: any order

Sequential: must occur in prescribed order

Optional: set a time period for them to fire
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Composite triggers - example JSON
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Deployment triggers
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Deployment triggers

Alternative approach for creating an automation:

- define an automation in code 
- specify the trigger condition in a 

DeploymentTrigger object and pass to .deploy()
- creates the automation when the deployment is 

created
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Deployment triggers - the flow to be triggered
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Deployment triggers - the trigger

Create a  DeploymentTrigger object

See the event specification docs:

docs.prefect.io/cloud/events/#event-specification
127
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Deployment triggers - create

Pass the trigger object to .deploy and run the script

128



Another way to begin automation creation in the UI:

- start from a deployment page
- click the + Add button under 

Triggers
- pre-populates the automation 

action with the deployment run
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Specifying an automation trigger

To create a custom 
trigger check out an 
event in the UI (Raw tab)

You can copy/paste and 
adjust in the trigger 
JSON.

See the Events docs.
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106 Recap

You’ve seen how to use several workflow patterns with

- subflows
- run_deployment
- automations 

- custom events defined in Python
- webhooks
- trigger defined in code at deployment creation
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106 Lab

- Create a deployment that uses a subflow
- Create a second deployment that uses 

run_deployment 
- Stretch: Create a webhook and an automation that 

runs a deployment when that webhook fires
- Stretch: Create a custom event in Python that 

triggers a notification action in an automation
- Super-stretch: Create a deployment that contains a 

trigger defined in Python code
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?
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Wrap

134



Brief feedback survey

Please let us know what went well and what could be 
improved. 🎉
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Congratulations!!!
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Bonus content
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Bonus content

- Prefect variables
- Task runners & async code
- Prefect REST API
- Turn shell commands into flows
- Testing
- Upload data to AWS S3
- Self hosted server instance
- Prefect profiles
- Deploy multiple flows
- Guided deployment creation with prefect deploy
- Deployments with prefect.yaml
- CI/CD with GitHub Actions
- Helm chart
- Terraform provider
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Variables
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Prefect variables

- String values evaluated at runtime
- Store and reuse non-sensitive, small data
- Create via UI or CLI
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Prefect variables

Only string values

141



Prefect variables
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Task runners for 
concurrency 
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Concurrency

- Helpful when waiting for external systems to 
respond

- Allows other work to be done while waiting
- Prefect’s ConcurrentTaskRunner replaces need for 

using Python’s async, await, etc.
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Concurrency & Parallelism:
via task runners
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Concurrency & Parallelism

- Concurrency: single-threaded, interleaving, GIL 
locked

- Parallelism: multiple events run at the same time

Your Prefect code runs sequentially by default
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Concurrency

147



Concurrency

- Helpful when waiting for external systems to 
respond (IO / network-bound work)

- Prefect’s ConcurrentTaskRunner allows you to 
concurrently execute code without async syntax
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Concurrency
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Concurrency
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Task Runners

- Specify in flow decorator
- ConcurrentTaskRunner is ready by default
- Use .submit() when call a task to return a 

PrefectFuture instead of direct result
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Task runners for 
true parallelism
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Parallelism

- Two or more operations happening at the same 
time on one or more machines

- Helpful when operations limited by CPU
- Many machine learning algorithms parallelizable
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Task Runners for parallelism

- DaskTaskRunner 
- RayTaskRunner

Both require an integration package:

- prefect-dask
- prefect-ray packages
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DaskTaskRunner for parallelism
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DaskTaskRunner for parallelism

- Can see the Dask UI if have bokeh package 
installed: pip install bokeh

- UI will be linked in the terminal at run time 
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Prefect REST API

157



If you want to talk to the API without Python

Cloud and server REST API interactive docs:

docs.prefect.io/latest/api-ref/rest-api

curl or use an HTTP client (httpx, requests)
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https://docs.prefect.io/latest/api-ref/rest-api/


PrefectClient to interact with the REST API

Or use the built-in PrefectClient for convenience

docs.prefect.io/guides/using-the-client 
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https://docs.prefect.io/latest/guides/using-the-client/


Common methods

160

- create_flow_run_from_deployment
- read_flow_run / read_flow_runs
- update_deployment
- delete_flow_run

github.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py

https://github.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py


Turn shell commands 
into flows

161



prefect shell

Turn a shell command into a flow:

prefect shell watch "curl http://wttr.in/Chicago?format=3"

No Python required!
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http://wttr.in/Chicago?format=3


prefect shell serve

Or create a long running serve process and deploy shell 
commands with prefect shell serve
prefect shell serve "curl http://wttr.in/Chicago?format=3" --flow-name "Daily Chicago 
Weather Report" --cron-schedule "0 9 * * *" --deployment-name "Chicago Weather"

This deployment runs on a schedule and can be run 
manually!
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Testing
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Testing

- Context manager for unit tests provided
- Run flows against temporary local SQLite db 

database
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Testing

- Use in a Pytest fixture
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Upload data to 
AWS S3

167



Steps

1. Install prefect-aws
2. Register new blocks
3. Create S3 bucket 
4. Create S3Bucket block from UI or CLI
5. Use in a flow

168



Install prefect-aws 

pip install -U prefect-aws

169



Register new blocks

 prefect blocks register -m prefect_aws
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See block types & blocks from CLI

prefect block type ls

prefect block ls
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Make an S3Bucket block

⚠ S3Bucket block from prefect-aws !=  S3 block 
that ships with Prefect

- Both block types upload and download data
- S3Bucket block has many methods
- We are showing how to use S3Bucket block
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Create S3 Bucket

173



Create S3Bucket block from UI
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Create S3Bucket block from UI
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AWS Credentials block from UI

Use the nested AWS Credentials block as needed
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AWS Credentials block from UI

Leave most fields blank. 

Probably use AWS Access Key ID & AWS Access 
Key Secret.
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Or create blocks with Python code
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View block in the UI
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Flow code loads S3 block and uploads data file
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Use your flow code!

- Can test with python my_script.py
- Then create a deployment and run it! 🎉
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See file in S3 bucket
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Self-hosted server 
instance

183



Self-hosted server instance

Alternative to Prefect Cloud: host your own Prefect 
server instance
- Backed by SQLite db by default
- Or use PostgreSQL in production
- Similar UI
- No events, push work pools, email server, 

authentication, user management, error 
summaries, etc.
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Self-hosted server instance

- Switch to a new profile
- Use an ephemeral API (default) or set the API 

endpoint (required if in a Docker container)

185



Self-hosted server instance

Start a server in another terminal with:

prefect server start
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Self-hosted server instance

Head to the UI at http://127.0.0.1:4200
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http://127.0.0.1:4200


Self-hosted server instance

Required when running Prefect inside a container: 

PREFECT_API_URL="http://127.0.0.1:4200/api"

See Prefect Helm Chart if running on Kubernetes 
github.com/PrefectHQ/prefect-helm 
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Prefect profiles

189



Prefect profiles

If you don’t already have a profile with Prefect Cloud 
you want to use for this course, create a new profile

Create: prefect profile create my_cloud_profile
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Prefect profiles

Inspect: prefect profile inspect my_cloud_profile

Select: prefect profile use my_cloud_profile
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Deploy multiple flows 
with serve

192



Deploy multiple flows

-
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Deploy multiple flows

- import serve
- use to_deployment() method
- use serve function and pass it the deployment 

objects
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Guided deployment 
creation 

195



Deployments: ETL code
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Deployments: ETL code
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Send deployment to server 

From the root of your repo run:

prefect deploy 

Choose the flow you want to put into a deployment
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Send deployment to server 

Enter a deployment name and then n for no schedule.
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Create a work pool
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Work pools

Give your work pool a name.

Or, if you have existing work pools, choose one
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Specify flow code storage

Prefect auto-detects if you are in a git repo.

No auto-push. 
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Deployments in the UI

The deployment lives on the server. See it in the UI.
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Save deployment configuration to prefect.yaml
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Recap of our setup

- Deployment & work pool created on Prefect Cloud
- Worker runs on local machine
- Worker polls Prefect Cloud, looking for scheduled 

work in the my_pool work pool
- Deployment configuration saved to prefect.yaml
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Schedule a run - what happened?

- Running worker finds scheduled work in my_pool work pool.
- Worker and work pool are typed. Local subprocess in this 

case.
- Worker creates a local subprocess to kick off flow run.
- Flow code cloned from GitHub into temporary directory.
- Flow code runs.
- Metadata and logs sent to Prefect Cloud.
- Temporary directory deleted.
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Deployment creation 
with prefect.yaml

207



prefect.yaml
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prefect.yaml

Configuration for creating deployments 

- pull step (repository & branch): from git repo 
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prefect.yaml

- deployments: 

Config for one or more deployments

Required keys:

- name
- entrypoint
- work_pool -> name
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Can override steps above on per-deployment basis 
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Re-deploy a deployment

Requires a prefect.yaml file 

prefect deploy 

212



Deploy multiple deployments at once

Deploy all deployments in a prefect.yaml file: 

prefect deploy --all
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prefect deploy 

If choose docker typed work pool you will be asked 
docker-related questions

214



Method 1: prefect deploy

Use the defaults for the work pool 

OR

Build a custom Docker image with flow code

- Push image to a Docker registry
- Use existing Dockerfile 
- Auto-includes packages in requirements.txt

Follow the prompts. 🙂
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Resulting prefect.yaml
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CI/CD with 
GitHub Actions

217



GitHub Actions with deployments

- CI/CD - when you push code or make a PR 
automatically take an action

- Pre-built Github Action to deploy a Prefect 
deployment

- github.com/marketplace/actions/deploy-a-prefec
t-flow

218

https://github.com/marketplace/actions/deploy-a-prefect-flow
https://github.com/marketplace/actions/deploy-a-prefect-flow


GitHub Action 
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Helm Chart

220



Prefect Helm Chart for K8s

Provides a variety of functionality

Creating workers is a popular use case. 

See more in the docs: 
github.com/PrefectHQ/prefect-helm/tree/main/charts/prefect-worker
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Terraform provider
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Prefect Cloud Terraform Provider

registry.terraform.io/providers/PrefectHQ/prefect/latest/docs

223

https://registry.terraform.io/providers/PrefectHQ/prefect/latest/docs
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