
PACC
Prefect Associate
Certification Course

Norms reminder

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise in Zoom to ask a question
Slack
● Use threads
● Emoji responses 🙂

2

104 - Work pool-based
deployments

3

104 Agenda

- Create work pool-based deployments with
.deploy()

- Flow code storage
- Prefect managed work pools
- Hybrid work pools with workers
- Push work pools

4

Why use a work pool-based deployment?

Infrastructure is a pain, Prefect makes it better. 🙂
- Run a deployment on a variety of infrastructure
- Provide a template for deployments
- Ability to prioritize work
- Options to scale infrastructure to 0 (serverless)

5

Create deployment with .deploy()

Very similar syntax to .serve()

Differences:
- need to specify a work pool
- doesn’t start a server

6

First work pool-based deployment

- create with .deploy()
- specify flow code stored in a GitHub repository
- specify an existing Prefect Managed workpool

7

Create deployment with .deploy()

8

Create deployment with .deploy()

Run the script

9

Create a deployment with .deploy()

Run the deployment from the UI or the CLI:

prefect deployment run
'pipeline/my-first-managed-deployment'

Takes a moment to start infra and pull base Docker image

10

See the deployment and flow run in the UI

11

Let’s break this down

12

Flow code
storage

13

14

1. Git-based remote repository (e.g. GitHub)
2. Bake your code into a Docker image
3. Cloud provider storage

We specified a public GitHub repo with .from_source()
class method.

Provide the source URL to the repo and the entrypoint
path:flow function name.

Flow code storage options

Work pools

15

16

Provide default infrastructure configuration for deployments

Work pools

Create a work pool of type Prefect Managed

With a Prefect Managed pool, Prefect runs your flow
code on our infrastructure in a Docker container.

👆Only available with Prefect Cloud

17

Create a Prefect Managed work pool

18

Create a Prefect Managed work pool

- Don’t modify the job template for now
- You can specify environment variables,

packages to install at runtime, etc.
- All deployments that use this work pool inherit

these settings

19

At runtime, Prefect:

1. Pulls the Docker image specified
2. Installs any specified packages
3. Pulls your flow code from GitHub
4. Runs your code in the container
5. Monitors state
6. Exits and cleans up 🧹

20

Hybrid model - hybrid
work pools with workers

21

Hybrid model = separation

- Your flow code runs on your infrastructure
- Your flow code is stored on your storage (GitHub,

AWS, Docker image, etc)
- Prefect Cloud stores metadata, logs, artifacts, etc.
- Data encrypted at rest
- Prefect Technologies, Inc. is SOC2 Type II compliant

https://www.prefect.io/security

22

https://www.prefect.io/security

Hybrid model

-

23

Workers

24

- Long-running process on the client
- Poll for scheduled flow runs from work pools
- Must match a work pool to pick up work

Workers

25

Work Pools

26

Docker work pool &
worker

27

Why use Docker?

- Same operating environment everywhere
- Lighter weight than a VM
- Linux (generally)
- Portable
- Very popular
- Almost all Prefect work pools use it

28

Docker work pool

Run a flow in a Docker container

1. Install: pip install -U prefect-docker
2. Start Docker on your machine
3. Create a Docker type work pool
4. Start a worker that polls the work pool
5. Create a deployment that specifies the work pool
6. Run the deployment

29

Create a Docker work pool

30

Package flow code into a Docker image with .deploy()

.from_source() method not needed if baking flow code into image
31

.deploy() method

Creates a Docker image with your flow code baked in
by default!

- specify the image name
- specify push=False to not push image to registry
- can create a requirements.txt file with packages to

install into the image (or add package names to
work pool or at deployment creation time)

32

Docker type worker

Start a Docker type worker to connect to a work pool
named my-docker-pool

prefect worker start -p my-docker-pool

33

Dockerfile used to create your image (under the hood)

34

Docker

- Prefect provides base Docker images
- Can customize base image
- Read about choosing images at

docs.prefect.io/concepts/infrastructure/#standard-python

35

https://docs.prefect.io/latest/concepts/infrastructure/#standard-python

Docker

- Run your deployment
- Worker pulls image and spins up Docker container
- Flow code runs in Docker container and exits 🚀

36

Docker

See container in Docker Desktop if running locally

37

Docker

Prerequisites reminder:

- Docker installed & running
- prefect-docker package installed

38

http://docs.docker.com/desktop/
https://prefecthq.github.io/prefect-docker/

Hybrid work pool types

1. Kubernetes
2. Docker
3. Serverless options such as ECS, ACI, GCR,

VertexAI
4. Process (local subprocess)

* Worker required for all

39

Process hybrid work pool with Prefect Cloud example

40

Push work pools

41

Push work pools

Serverless options with no worker required

Options:

- AWS ECS, Google Cloud Run, Azure Container
Instances

Create from CLI:
prefect work-pool create --type modal:push --provision-infra my-modal-pool

42

Push work pools

Prefect will create everything for you with --provision-infra

Prerequisites to use:

- Cloud provider account
- CLI tool installed
- Authenticated locally

prefect work-pool create --type modal:push --provision-infra my-modal-pool

43

What’s a work queue for?

- Prioritize work
- Limit concurrent runs

⚠ default work queue created automatically

44

Pause work pools or work queues

45

104 Recap

You’ve seen how to
- Create work-pool based deployments! 🎉
- Create a deployment that uses a Prefect managed

work pool and flow code stored on GitHub
- Use the hybrid model with workers
- Bake flow code into Docker images
- Create push work pools with a single command
- Pause and resume work pools and work queues

46

Lab 104

47

Reminder: breakout room norms

1. 🙂 Introduce yourselves
2. 🎥 Camera on (if possible)
3. 💻 One person shares screen
4. 󰳕 Everyone codes
5. 🙋 Each person talks
6. 😌 Low-pressure, welcoming environment: lean in

Breakout rooms with lots of participation =
more fun + more learning! 😎

48

104 Lab

- Create a Prefect Managed work pool.
- Create and run a deployment that uses the work pool.
- Use flow code stored in your own GitHub repository with

a deployment.
- Pause and resume the work pool from the UI.

49

104 Lab Extensions

- Stretch 1: bake your flow code into a Docker image with .deploy().
- Don’t push the image to a remote repository (or do log in and push it

to DockerHub).

Don’t forget to:
- Start Docker on your machine
- pip install -U prefect-docker
- Make a Docker work pool
- Start a Docker type worker that polls the pool

- Stretch 2: create a push work pool with provision-infra and use it in a
deployment.

- Stretch 3: add an environment variable to a work pool and use it.

50

Lab 104: a solution

One person from each group, share your code in
Slack 🧵
Discuss

Questions?

51

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?

52

105 - Interactive workflows &
incidents

53

105 Agenda

- Interactive workflows
- Human in the loop

- Incidents
- Metric triggers
- Prefect Runtime
- State change hooks

54

Interactive workflows

55

Interactive workflows

Pause a flow run to wait for input from a user via a
web form (human-in-the-loop) 🙂
pause_flow_run function

56

Human-in-the-loop: basic

57

Human-in-the-loop: basic

58

Human-in-the-loop: basic

59

Human-in-the-loop: basic

60

Human-in-the-loop

- For validation: can use RunInput class, which is a
subclass of Pydantic’s BaseModel class

- Able to specify a default value or create a
dropdown

- Can create a default value at runtime

61

Human-in-the-loop: default value

62

Human-in-the-loop: default value

63

Human-in-the-loop: custom validation

64

Human-in-the-loop: custom validation

65

Human-in-the-loop: custom validation

66

Human-in-the-loop: custom validation

67

Incidents 🚨

68

Incidents

Formal declarations of disruptions to a workspace

69

Incidents

- visible workspace-wide
- keeps team updated for faster resolution
- creates record for analysis and compliance
- Custom plan tier only

70

Incidents

Declare an incident manually or automatically through
an automation when an event occurs

71

Metric triggers

72

Metric triggers

Create an automation that uses a metric as a trigger

73

Metric triggers

When a pattern is detected, then take an action

- send a notification
- toggle on a work pool
- create an incident
- run a deployment

74

Other trigger types

- can use status of many
Prefect objects as triggers

- incidents can act as a
trigger

75

prefect.runtime

76

Module for runtime context access.

Useful for labeling, logs, etc.

Includes:

- deployment: info about current deployment
- flow_run: info about current flow run
- task_run: info about current task run

77

prefect.runtime

78

prefect.runtime

Useful for labeling, logs, etc.

79

prefect.runtime

State change hooks

80

State change hooks

Execute code in response to flow run or task run state
changes

81

State change hooks

82

State change hooks

83

105 Recap

You’ve seen how to:

- Create an interactive workflow that pauses a
flow run for input from a user

- Use a metric trigger in an automation
- Get current info into a flow with prefect_runtime
- Use a state change hook

84

Lab 105

85

105 Lab

- Create an interactive workflow that pauses a flow
run for input from a user.

- Print the flow run name in your code with
prefect_runtime

- Use a state change hook to run code when a flow
run state is reached.

- Stretch1: Use a metric trigger in an automation.
- Stretch2: Check out the send and receive input

examples in the course repo for the module

86

Lab 105: a solution

One person from each group, share your code in
Slack 🧵
Discuss

Questions?

87

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?

88

106 - Workflow patterns &
event-based workflows

89

106 Agenda

Workflow patterns with

- subflows
- run_deployment
- automations

Automation triggers

- custom events
- webhooks
- deployment triggers

90

Workflow patterns

91

Workflow patterns - prefect.io/blog/workflow-design-patterns

Flow of deployments Event triggered flow

Monoflow

92

Flow of subflows

https://www.prefect.io/blog/workflow-design-patterns

You have seen this pattern

Flow of deployments Event triggered flow

Monoflow

93

Flow of subflows

Subflows

94

Workflow patterns - Flow of subflows

Flow of deployments Event triggered flow

Monoflow

95

Flow of subflows

Subflow

- A flow that calls another flow
- Useful for grouping related tasks

96

Subflows

97

Timeline view

98

run_deployment

99

Workflow patterns - Flow of deployments (run_deployment)

Flow of deployments Event triggered flow

Monoflow

100

Flow of subflows

run_deployment

101

run_deployment

102

run_deployment

103

Event-triggered
workflows

104

Workflow patterns - Event-triggered

Flow of deployments Event-triggered flow

Monoflow

105

Flow of subflows

Custom events in
Python

106

Custom events

Great when working in Python land and want to get
data into an automation 🐍

107

Create custom event to be emitted when code runs

emit_event must provide two args: event and

resource= {“prefect.resource.id: val”}

108

Run code and head to the Event Feed page

Click link to see event page

109

See event details on the Raw tab

110

Data from event can be used in an automation action

For example: Populate a flow param via a Run
Deployment action

Use emit_event’s payload parameter

111

Example: custom event with detailed payload

112

Event webhooks 🕸🪝

113

Event webhooks

- expose a URL endpoint
- provides consistent interface for integrating

external applications with Prefect
- when webhook URL is pinged, creates a Prefect

event - can be used as a trigger in an automation
- great when not in Python land

114

Event webhooks

115

Event webhooks

- use Jinja2 for dynamic templating
- template should be valid JSON
- create from UI or CLI

116

Event webhooks

Hit the endpoint provided by Prefect:

curl https://api.prefect.cloud/hooks/your_slug_here

117

Event webhooks

See the event that is created under Event Feed in the
UI

118

Event webhooks

⚡ Use this event as a custom trigger in an automation!

119

Composite triggers

120

Composite triggers

121

Composite triggers

An automation trigger made of more than one event

Compound: any order

Sequential: must occur in prescribed order

Optional: set a time period for them to fire

122

Composite triggers - example JSON

123

Deployment triggers

124

Deployment triggers

Alternative approach for creating an automation:

- define an automation in code
- specify the trigger condition in a

DeploymentTrigger object and pass to .deploy()
- creates the automation when the deployment is

created

125

Deployment triggers - the flow to be triggered

126

Deployment triggers - the trigger

Create a DeploymentTrigger object

See the event specification docs:

docs.prefect.io/cloud/events/#event-specification
127

https://docs.prefect.io/latest/cloud/events/#event-specification

Deployment triggers - create

Pass the trigger object to .deploy and run the script

128

Another way to begin automation creation in the UI:

- start from a deployment page
- click the + Add button under

Triggers
- pre-populates the automation

action with the deployment run

129

Specifying an automation trigger

To create a custom
trigger check out an
event in the UI (Raw tab)

You can copy/paste and
adjust in the trigger
JSON.

See the Events docs.

130

106 Recap

You’ve seen how to use several workflow patterns with

- subflows
- run_deployment
- automations

- custom events defined in Python
- webhooks
- trigger defined in code at deployment creation

131

106 Lab

- Create a deployment that uses a subflow
- Create a second deployment that uses

run_deployment
- Stretch: Create a webhook and an automation that

runs a deployment when that webhook fires
- Stretch: Create a custom event in Python that

triggers a notification action in an automation
- Super-stretch: Create a deployment that contains a

trigger defined in Python code

132

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?

133

Wrap

134

Brief feedback survey

Please let us know what went well and what could be
improved. 🎉

135

Congratulations!!!

136

Bonus content

137

Bonus content

- Prefect variables
- Task runners & async code
- Prefect REST API
- Turn shell commands into flows
- Testing
- Upload data to AWS S3
- Self hosted server instance
- Prefect profiles
- Deploy multiple flows
- Guided deployment creation with prefect deploy
- Deployments with prefect.yaml
- CI/CD with GitHub Actions
- Helm chart
- Terraform provider

138

Variables

139

Prefect variables

- String values evaluated at runtime
- Store and reuse non-sensitive, small data
- Create via UI or CLI

140

Prefect variables

Only string values

141

Prefect variables

142

Task runners for
concurrency

143

Concurrency

- Helpful when waiting for external systems to
respond

- Allows other work to be done while waiting
- Prefect’s ConcurrentTaskRunner replaces need for

using Python’s async, await, etc.

144

Concurrency & Parallelism:
via task runners

145

Concurrency & Parallelism

- Concurrency: single-threaded, interleaving, GIL
locked

- Parallelism: multiple events run at the same time

Your Prefect code runs sequentially by default

146

Concurrency

147

Concurrency

- Helpful when waiting for external systems to
respond (IO / network-bound work)

- Prefect’s ConcurrentTaskRunner allows you to
concurrently execute code without async syntax

148

Concurrency

149

Concurrency

150

Task Runners

- Specify in flow decorator
- ConcurrentTaskRunner is ready by default
- Use .submit() when call a task to return a

PrefectFuture instead of direct result

151

Task runners for
true parallelism

152

Parallelism

- Two or more operations happening at the same
time on one or more machines

- Helpful when operations limited by CPU
- Many machine learning algorithms parallelizable

153

Task Runners for parallelism

- DaskTaskRunner
- RayTaskRunner

Both require an integration package:

- prefect-dask
- prefect-ray packages

154

DaskTaskRunner for parallelism

155

DaskTaskRunner for parallelism

- Can see the Dask UI if have bokeh package
installed: pip install bokeh

- UI will be linked in the terminal at run time

156

Prefect REST API

157

If you want to talk to the API without Python

Cloud and server REST API interactive docs:

docs.prefect.io/latest/api-ref/rest-api

curl or use an HTTP client (httpx, requests)

158

https://docs.prefect.io/latest/api-ref/rest-api/

PrefectClient to interact with the REST API

Or use the built-in PrefectClient for convenience

docs.prefect.io/guides/using-the-client

159

https://docs.prefect.io/latest/guides/using-the-client/

Common methods

160

- create_flow_run_from_deployment
- read_flow_run / read_flow_runs
- update_deployment
- delete_flow_run

github.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py

https://github.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py

Turn shell commands
into flows

161

prefect shell

Turn a shell command into a flow:

prefect shell watch "curl http://wttr.in/Chicago?format=3"

No Python required!

162

http://wttr.in/Chicago?format=3

prefect shell serve

Or create a long running serve process and deploy shell
commands with prefect shell serve
prefect shell serve "curl http://wttr.in/Chicago?format=3" --flow-name "Daily Chicago
Weather Report" --cron-schedule "0 9 * * *" --deployment-name "Chicago Weather"

This deployment runs on a schedule and can be run
manually!

163

Testing

164

Testing

- Context manager for unit tests provided
- Run flows against temporary local SQLite db

database

165

Testing

- Use in a Pytest fixture

166

Upload data to
AWS S3

167

Steps

1. Install prefect-aws
2. Register new blocks
3. Create S3 bucket
4. Create S3Bucket block from UI or CLI
5. Use in a flow

168

Install prefect-aws

pip install -U prefect-aws

169

Register new blocks

 prefect blocks register -m prefect_aws

170

See block types & blocks from CLI

prefect block type ls

prefect block ls

171

Make an S3Bucket block

⚠ S3Bucket block from prefect-aws != S3 block
that ships with Prefect

- Both block types upload and download data
- S3Bucket block has many methods
- We are showing how to use S3Bucket block

172

Create S3 Bucket

173

Create S3Bucket block from UI

174

Create S3Bucket block from UI

175

AWS Credentials block from UI

Use the nested AWS Credentials block as needed

176

AWS Credentials block from UI

Leave most fields blank.

Probably use AWS Access Key ID & AWS Access
Key Secret.

177

Or create blocks with Python code

178

View block in the UI

179

Flow code loads S3 block and uploads data file

180

Use your flow code!

- Can test with python my_script.py
- Then create a deployment and run it! 🎉

181

See file in S3 bucket

182

Self-hosted server
instance

183

Self-hosted server instance

Alternative to Prefect Cloud: host your own Prefect
server instance
- Backed by SQLite db by default
- Or use PostgreSQL in production
- Similar UI
- No events, push work pools, email server,

authentication, user management, error
summaries, etc.

184

Self-hosted server instance

- Switch to a new profile
- Use an ephemeral API (default) or set the API

endpoint (required if in a Docker container)

185

Self-hosted server instance

Start a server in another terminal with:

prefect server start

186

Self-hosted server instance

Head to the UI at http://127.0.0.1:4200

187

http://127.0.0.1:4200

Self-hosted server instance

Required when running Prefect inside a container:

PREFECT_API_URL="http://127.0.0.1:4200/api"

See Prefect Helm Chart if running on Kubernetes
github.com/PrefectHQ/prefect-helm

188

http://127.0.0.1:4200/api
https://github.com/PrefectHQ/prefect-helm

Prefect profiles

189

Prefect profiles

If you don’t already have a profile with Prefect Cloud
you want to use for this course, create a new profile

Create: prefect profile create my_cloud_profile

190

Prefect profiles

Inspect: prefect profile inspect my_cloud_profile

Select: prefect profile use my_cloud_profile

191

Deploy multiple flows
with serve

192

Deploy multiple flows

-

193

Deploy multiple flows

- import serve
- use to_deployment() method
- use serve function and pass it the deployment

objects

194

Guided deployment
creation

195

Deployments: ETL code

196

Deployments: ETL code

197

Send deployment to server

From the root of your repo run:

prefect deploy

Choose the flow you want to put into a deployment

198

Send deployment to server

Enter a deployment name and then n for no schedule.

199

Create a work pool

200

Work pools

Give your work pool a name.

Or, if you have existing work pools, choose one

201

Specify flow code storage

Prefect auto-detects if you are in a git repo.

No auto-push.

202

Deployments in the UI

The deployment lives on the server. See it in the UI.

203

Save deployment configuration to prefect.yaml

204

Recap of our setup

- Deployment & work pool created on Prefect Cloud
- Worker runs on local machine
- Worker polls Prefect Cloud, looking for scheduled

work in the my_pool work pool
- Deployment configuration saved to prefect.yaml

205

Schedule a run - what happened?

- Running worker finds scheduled work in my_pool work pool.
- Worker and work pool are typed. Local subprocess in this

case.
- Worker creates a local subprocess to kick off flow run.
- Flow code cloned from GitHub into temporary directory.
- Flow code runs.
- Metadata and logs sent to Prefect Cloud.
- Temporary directory deleted.

206

Deployment creation
with prefect.yaml

207

prefect.yaml

208

prefect.yaml

Configuration for creating deployments

- pull step (repository & branch): from git repo

209

prefect.yaml

- deployments:

Config for one or more deployments

Required keys:

- name
- entrypoint
- work_pool -> name

210

Can override steps above on per-deployment basis

211

Re-deploy a deployment

Requires a prefect.yaml file

prefect deploy

212

Deploy multiple deployments at once

Deploy all deployments in a prefect.yaml file:

prefect deploy --all

213

prefect deploy

If choose docker typed work pool you will be asked
docker-related questions

214

Method 1: prefect deploy

Use the defaults for the work pool

OR

Build a custom Docker image with flow code

- Push image to a Docker registry
- Use existing Dockerfile
- Auto-includes packages in requirements.txt

Follow the prompts. 🙂

215

Resulting prefect.yaml

216

CI/CD with
GitHub Actions

217

GitHub Actions with deployments

- CI/CD - when you push code or make a PR
automatically take an action

- Pre-built Github Action to deploy a Prefect
deployment

- github.com/marketplace/actions/deploy-a-prefec
t-flow

218

https://github.com/marketplace/actions/deploy-a-prefect-flow
https://github.com/marketplace/actions/deploy-a-prefect-flow

GitHub Action

219

Helm Chart

220

Prefect Helm Chart for K8s

Provides a variety of functionality

Creating workers is a popular use case.

See more in the docs:
github.com/PrefectHQ/prefect-helm/tree/main/charts/prefect-worker

221

https://github.com/PrefectHQ/prefect-helm/tree/main/charts/prefect-worker

Terraform provider

222

Prefect Cloud Terraform Provider

registry.terraform.io/providers/PrefectHQ/prefect/latest/docs

223

https://registry.terraform.io/providers/PrefectHQ/prefect/latest/docs

PACC
Prefect Associate
Certification Course

