4 A g
\/\/ N ¥ Ul
\ ,

A ““0‘0’0’00.. 0 . .
0000000000
L?MTOOOOAZY’QQO
: ...oAqlnxxv
DRRRRARAN X
- i " ..00000000"0‘
- .O.a.@.@o@w@waw&

OO
o
o%% 6

PACC
Prefect Associate
Certification Course

PREFECT

Norms reminder

Zoom

e (Camera on
e Mute unless asking a question
e Use hand raise in Zoom to ask a question

Slack

e Use threads
e Emoji responses @

104 - Work pool-base
deployments

PREFECT

104 Agenda

- Create work pool-based deployments with
.deploy()

- Flow code storage

- Prefect managed work pools

- Hybrid work pools with workers

- Push work pools

Why use a work pool-based deployment?

Infrastructure is a pain, Prefect makes it better. @

- Run a deployment on a variety of infrastructure
Provide a template for deployments

Ability to prioritize work

Options to scale infrastructure to O (serverless)

Create deployment with .deploy()

Very similar syntax to .serve()

Differences:
- need to specify a work pool
- doesn’t start a server

First work pool-based deployment

- create with .deploy()
- specify flow code stored in a GitHub repository
- specify an existing Prefect Managed workpool

Create deployment with .deploy()

from prefect import flow

if __name__ == "__main__":
flow. from_source(
source="https://github.com/discdiver/pacc-2024.git",
entrypoint="102/weather2-tasks.py:pipeline",
) .deploy(
name="my-first-managed-deployment",
work_pool_name="managedl",

Create deployment with .deploy()

Run the script

Successfully created/updated all deployments!

Deployments

Name Status Details

pipeline/my-first-managed-deployment | applied

To schedule a run for this deployment, use the following command:
$ prefect deployment run 'pipeline/my-first-managed-deployment'

You can also run your flow via the Prefect UI:

https://app.prefect.cloud/account/9b649228-0419-40e1-9e0d-44954b5cPab6/workspace/d137367a-5055-44ff-b91c-6f7366c9%e4
c4/deployments/deployment/d448be8f-2092-471f9-8d0b—-ee@6cel82480

10

Create a deployment with .deploy()

Run the deployment from the Ul or the CLI:

prefect deployment run
pipeline/my-first-managed-deployment’

Takes a moment to start infra and pull base Docker image

11

See the deployment and flow run in the Ul

Deployments / my-first-managed-deployment

Flow &2 pipeline Work Pool 5] managed]

SUCCESS RATE ©) AVERAGE LATENESS
)
100% Os
OO e e e s e e S 1s
60% 0.6s
20% 0.2s
Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu
Runs Upcoming Parameters Configuration Description
1 Flow run Q. Search by run name

pipeline > fiery-bee
[5) Pending (=) Scheduled for 2024/02/06 05:24:31PM (© None () None
Deployment ©) my-first-managed-deployment Work Pool &) managed1

AVERAGE DURATION

Os

1s

0.6s
0.2s
We Th Fr Sa Su Mo Tu
All except scheduled ¢ Newest to oldest

~
v

12

Let’'s break this down

13

Flow code
storage

=
p—— —

14

Flow code storage options

1. Git-based remote repository (e.g. GitHub)
2. Bake your code into a Docker image
3. Cloud provider storage

We specified a public GitHub repo with .from_source()
class method.

Provide the source URL to the repo and the entrypoint
path:flow function name.

~® Work pools

15

16

Work pools

Provide default infrastructure configuration for deployments

Create a work pool of type Prefect Managed

Managed

Managed work pools execute flow runs on Prefect Cloud infrastructure.

Prefect Managed Beta

Execute flow runs within containers on Prefect managed
infrastructure.

With a Prefect Managed pool, Prefect runs your flow
code on our infrastructure in a Docker container.

¥ Only available with Prefect Cloud

17

Create a Prefect Managed work pool

Work Pools / Create

N
) Infrastructure Type (v) Details 03) Configuration
4 N

Below you can configure workers' behavior when executing flow runs from this work pool. You can use the editor in the Advanced section to
modify the existing configuration options if you need additional configuration options.

If you don't need to change the default behavior, hit Create to create your work pool!

Base Job Template

Defaults Advanced

(@ The fields below control the default values for the base job template. These values can be overridden by deployments.

Pip Packages (Optional)
Alist of python packages that will be installed via pip at runtime (this will occur prior to any pull steps configured on the deployment).

1 Format

Environment Variables (Optional)
Environment variables to set when starting a flow run.

1 Format

Image (Optional)
The prefect image to use for your flow run execution environment.

prefecthg/prefect:2-latest 2

Job Timeout (Optional)
The length of time (in seconds) that Prefect will wait for a run to complete before crashing the flow run.

600

Cancel Previous Create

18

19

Create a Prefect Managed work pool

- Don’t modify the job template for now

- You can specify environment variables,
packages to install at runtime, etc.

- All deployments that use this work pool inherit
these settings

20

At runtime, Prefect:

Pulls the Docker image specified
nstalls any specified packages
Pulls your flow code from GitHub

o G oS G =

Runs your code in the container
Monitors state
Exits and cleans up ¢~

l

e Hybrid model - hybrid
work pools with workers

22

Hybrid model = separation

- Your flow code runs on your infrastructure

- Your flow code is stored on your storage (GitHub,
AWS, Docker image, etc)

- Prefect Cloud stores metadata, logs, artifacts, etc.

- Data encrypted at rest

- Prefect Technologies, Inc. is SOC2 Type |l compliant

nttps://www.prefect.io/security

https://www.prefect.io/security

’ Prefect Cloud

N PREFECT

Metadata -
Database
User
Worker |«——» Work Pool |= API Server Interface

Infrastructure
to Run a
Flow On

A}

A}

Python Flow
Code

24

25

Workers

- Long-running process on the client
- Poll for scheduled flow runs from work pools
- Must match a work pool to pick up work

WORKERS & WORK POOLS

YOUR ENVIRONMENT RREFECIRCIEGUD

Polls for work

WORKER A

Scheduled work

B N\>-

WORKERC ol

l

Docker work pool &
worker docker

e

27

28

Why use Docker?

- Same operating environment everywhere
- Lighter weight than a VM

- Linux (generally)

- Portable

Very popular

Almost all Prefect work pools use it

29

Docker work pool

Run a flow in a Docker container

Install: pip install -U prefect-docker

Start Docker on your machine

Create a Docker type work pool

Start a worker that polls the work pool

Create a deployment that specifies the work pool

Run the deployment

on G e e e

30

Create a Docker work pool

Hybrid

Hybrid work pools require workers to poll for and execute flow runs in your infrastructure.

aws

AWS Elastic Container Service

Execute flow runs within containers on AWS ECS. Works with EC2 and Fargate clusters. Requires an AWS account.

Azure Container Instances

Execute flow runs within containers on Azure's Container Instances service. Requires an Azure account.

Docker

Execute flow runs within Docker containers. Works well for managing flow execution environments via Docker
images. Requires access to a running Docker daemon.

Google Cloud Run

Execute flow runs within containers on Google Cloud Run. Requires a Google Cloud Platform account.

Google Cloud Run V2

Execute flow runs within containers on Google Cloud Run (V2 API). Requires a Google Cloud Platform account.

Google Vertex Al

Execute flow runs within containers on Google Vertex Al. Requires a Google Cloud Platform account.

Kubernetes

Execute flow runs within jobs scheduled on a Kubernetes cluster. Requires a Kubernetes cluster.

31

Package flow code into a Docker image with .deploy()

from prefect import flow

@flow(log_prints=True)
def buy():
print("Buying securities")

if __name__ == "__main__":
buy.deploy(
name="my-code-in-an-image-deployment",
work_pool_name="my-docker-pool",
image="discdiver/local-image:1.0",
push=False,

.from_source() method not needed if baking flow code into image ?

.deploy() method

Creates a Docker image with your flow code baked in
by default!

- specify the image name

- specify push=False to not push image to registry

- can create a requirements.txt file with packages to
install into the image (or add package names to
work pool or at deployment creation time)

a2

33

Docker type worker

Start a Docker type worker to connect to a work pool
named my-docker-pool

prefect worker start -p my-docker-pool

34

Dockerfile used to create your image (under the hood)

FROM prefecthq/prefect:2-latest
COPY requirements.txt /opt/prefect/104/requirements.txt

RUN python -m pip install -r requirements.txt
COPY . /opt/prefect/pacc-2024/
WORKDIR /opt/prefect/pacc-2024/

35

Docker

- Prefect provides base Docker images
- Can customize base image

- Read about choosing images at
docs.prefect.io/concepts/infrastructure/#standard-pyvthon

https://docs.prefect.io/latest/concepts/infrastructure/#standard-python

36

Docker

- Run your deployment
- Worker pulls image and spins up Docker container
- Flow code runs in Docker container and exits #-

Docker

See container in Docker Desktop if running locally

Containers Give feedback =y

A container packages up code and its dependencies so the application runs quickly and reliably from one computing environment to

another. Learn more

‘ Only show running containers Q, Search
|:| NAME IMAGE STATUS PORT(S) STARTED ACTIONS
] m i) refecthq/f Exited >
26fedofge2es [

S

38

Docker

Prerequisites reminder:

- Docker installed & running
- prefect-docker package installed

http://docs.docker.com/desktop/
https://prefecthq.github.io/prefect-docker/

39

Hybrid work pool types

1. Kubernetes

Docker

3. Serverless options such as ECS, ACI, GCR,

VertexAl

4. Process (local subprocess)

* Worker required for all

l

e Push work pools

41

Push work pools

Serverless options with no worker required
Options:

- AWS ECS, Google Cloud Run, Azure Container
Instances

Create from CLI:

prefect work-pool create --type modal:push --provision-infra my-modal-pool

42

Push work pools

Prefect will create everything for you with --provision-infra
Prerequisites to use:

- Cloud provider account
- CLI tool installed
- Authenticated locally

prefect work-pool create --type modal:push --provision-infra my-modal-pool

What's a work queue for?

- Prioritize work
- Limit concurrent runs

A\ default work queue created automatically

43

Pause work pools or work queues

basic-k8s

{¥ Kubernetes

Concurrency Limit Unlimited

1 Work Queue |+ Q Search
Name Concurrency Limit Priority @ Status
default 1 Unhealthy

44

104 Recap

You’ve seen how to

- Create work-pool based deployments! &

- Create a deployment that uses a Prefect managed
work pool and flow code stored on GitHub

- Use the hybrid model with workers

- Bake flow code into Docker images

- Create push work pools with a single command

- Pause and resume work pools and work queues

45

Lab 104

47

Reminder: breakout room norms

1. @ Introduce yourselves

2 Camera on (if possible)

3. Ea One person shares screen

4. & Everyone codes

5. (@ Each person talks

6. @ Low-pressure, welcoming environment: lean in

Breakout rooms with lots of participation =
more fun + more learning! &

48

104 Lab

- Create a Prefect Managed work pool.

- Create and run a deployment that uses the work pool.

- Use flow code stored in your own GitHub repository with
a deployment.

- Pause and resume the work pool from the UI.

49

104 Lab Extensions

Stretch 1: bake your flow code into a Docker image with .deploy().
Don’t push the image to a remote repository (or do log in and push it to
DockerHub).

Don’t forget to:

Start Docker on your machine
- pip install -U prefect-docker
Make a Docker work pool
Start a Docker type worker that polls the pool

Stretch 2: create a push work pool with provision-infra and use it in a
deployment.
Stretch 3: add an environment variable to a work pool and use it.

50

Lab 104: a solution

One person from each group, share your code in
Slack T

Discuss

Questions?

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

—_—) e
N 2o

51

N OhWDN =

set up logging?

do it every hour?

visualize the dependencies?

automatically retry if it fails?

create an artifact for human viewing?

add caching?

add collaborators to run and view - who don’t code?
send me a message when it succeeds?

run it in a Docker container-based environment?
pause for input?

automatically declare an incident when a % of workflows fail?
automatically run a workflow in response to an event?

(7))
i’
C
)
O
O
S

PREFECT

53

105 Agenda

- Interactive workflows
- Human in the loop

- Incidents

- Metric triggers

- Prefect Runtime

- State change hooks

l

Interactive workflows
4‘

55

Interactive workflows

Pause a flow run to wait for input from a user via a
web form (human-in-the-loop) @

pause_flow run function

56

Human-in-the-loop: basic

from prefect import flow, pause_flow_run

@flow(log_prints=True)

def greet_user():
name = pause_flow_run(str)
print(f"Hello, {name}!")

if _name__ == "__main__":
greet_user()

57

Human

-in-the-loop: basic

Flow Runs / energetic-stallion

[5) Paused (=) 2024/01/30 02:03:03PM (D 1s O None Resume [> Cancel

“an

Flow €2 greet-user

v Events

Logs

INFO

224
Task Runs Subflow Runs Results Artifacts Details Parameters
Level: all < Oldest to newest ¢
Jan 36th, 2024
Pausing flow, execution will continue when this flow run is resumed. 02:083:03 PM

prefect.flow_runs

58

Human-in-the-loop: basic

INFO

Resume Flow Run X

Current Flow Run State
[=) Paused

Flow requires input. Please fill out the form below to resume.

Do you want to resume energetic-stallion?

Value

Jeffl

Cancel Submit

Human-in-the-loop: basic

Jan 30th, 2024

INFO Pausing flow, execution will continue when this flow run is resumed.
INFO Resuming flow run execution!

INFO Hello, Jeff!

INFO Finished in state Completed()

59

92:03:03 PM
prefect.flow_runs

02:06:06 PM
prefect.flow_runs

02:06:06 PM
prefect.flow_runs

02:06:87 PM
prefect.flow_runs

60

Interctive workflows

- For validation: can use Runinput class, which is a
subclass of Pydantic’'s BaseModel class
- Able to specify a default value or create a

dropdown
- Can create a default value

61

Human-in-the-loop: default value

import asyncio
from prefect import flow, pause_flow_run
from prefect.input import RunInput

class UserNameInput(RunInput):
name: str

@flow(log_prints=True)
async def greet_user():
user_input = await pause_flow_run(
wait_for_input=UserNameInput.with_initial_data(name="anonymous")

if user_input.name == "anonymous":
print("Hello, stranger!")
else:

print(f"Hello, {user_input.name}!")

if _ _name__ == "_ _main__":
asyncio.run(greet_user())

62

Human-in-the-loop: default value

glistening-penguin
5 2024/01/11 02:12:35PM (©® 1s Q None

Flow

Resume Flow Run X
Current Flow Run State

[Paused
Flow requires input. Please fill out the form below to resume.

Do you want to resume glistening-penguin?

Name (Optional)

anonymous

Cancel Submit

INFO

Resume >

all

<>

Old

63

Human-in-the-loop: custom validation

from typing import Literal

inport pydantic

from prefect import flow, pause_flow_run
from prefect.input import RunInput

class ShirtOrder(RunInput):
""“Shirt order options"""

size: Literal["small", "medium", "large", "xlarge"]
color: Literal["red", “green", "black"l]

@pydantic.validator("color")
def validate_shirt(cls, value, values, xxkwargs):
"mtyalidate that shirt combo exists"""

if value == "green" and values["size"] == "small":
raise ValueError("We don't carry that combination.")
return value

64

Human-in-the-loop: custom validation

@flow(log_prints=True)

def get_shirt_order():
"""Get shirt selection from user via UI"""
shirt_order = None

while shirt_order is None:
try:
shirt_order = pause_flow_run(wait_for_input=ShirtOrder)
print(f"We'll send you your shirt in {shirt_order} ASAP!")
except pydantic.ValidationError:
print(f"Invalid size and color combination.")

if __name__ == "__main__":
get_shirt_order()

65

Human-in-the-loop: custom validation

tireless-curassow

5 2024/01/30 06:35:20PM (® 1s O None Resume [>
Flow
Vv Events
Resume Flow Run X
Logs Current Flow Run State
[Paused
Flow requires input. Please fill out the form below to resume. et Old:

Do you want to resume tireless-curassow?

Size
INFO

<>

small

Color

green S

Search

None

red

black

66

Human-in-the-loop: custom validation

INFO

INFO

INFO

INFO

INFO

INFO

INFO

Jan 30th, 2024

Pausing flow, execution will continue when this flow run is resumed.

Resuming flow run execution!

Invalid size and color combination.

Pausing flow, execution will continue when this flow run is resumed.

Resuming flow run execution!

We'll send you your shirt in size='medium' color='red' ASAP!

Finished in state Completed()

68

Incidents

Formal declarations of disruptions to a workspace

Critical sev-1 incident active: Warehouse Ingestion Broken

Dashboard

Flow Runs

4 0

call-webhook-flow
2h 8m ago

call-webhook-flow > bright-chamois

[Failed = (5) 2024/01/08 08:55:03 AM (® 2s O 1task run

(-]

11 total

Failed due to a(n) Exception Failed to call the webhook. Status code:

204

Duration: 4m

All tags <

Active Incidents

late flow
Severity Last updated
M High sev-2 1m 14s ago

Warehouse Ingestion Broken

Severity Last updated
Critical sev-1 2m 9s ago

Task Runs

4

2 Completed 50%
2 Failed 50%

Last updated: 2m 9s ago

& () Pastlday v -

Duration

12d 23h

Duration

4m

Events

262

6 Block

8 Worker
248 Other

69

Incidents

- visible workspace-wide

- keeps team updated for faster resolution

- creates record for analysis and compliance
- Pro and Enterprise level feature

Incidents

Declare an incident manually or automatically through
an automation when an event occurs

Critical sev-1 incident active: Warehouse Ingestion Broken Duration: 10m Last updated: 2m 33s ago
Incidents / Warehouse Ingestion Broken & Beta V/ Mark resolved :
Status Severity Started Duration

Active Critical sev-1 & 2024/01/08 11:00 AM & 10m

Timeline Summary Z
2024/01/08 None
Incident declared manually by Taylor Curran at 11:00:00 AM Tags Z
Severity None
Critical sev-1
Related resources %
Block document
Taylor Curran added | belligerent-junglefowl = to the related resources list 8m 22s ago geo-data-warehouse
Flow run
belligerent-junglefowl
Taylor Curran added | bright-chamois | to the related resources list and bright-chamois

removed | belligerent-junglefowl = from the related resources list 8m 9s ago

Taylor Curran commented 4m 13s ago

Client A reported bad data quality.

l

o Metric triggers

72

Metric triggers

Create an automation that uses a metric as a trigger

Automations / Create Documentation &
N 7R
[01) Trigger (02) Actions [03) Details

__. i _/'/

Trigger Type

Metric

Metric Over the last

Average success percentage 2 10 Minutes ¢

Threshold For

< S 70 % 1 Minutes ¢

Flows

train-model X validation-flow X

Cancel Previous Next

Metric triggers

When a pattern is detected, then take an action

- send a notification
- toggle on a work pool
- create an incident
- run a deployment

Other trigger types

Trigger Type

- Can use status of many ' Select trigger

Prefect objects as triggers
- Incidents can act as a ow run state

trigger Metric

Work pool status

Deployment status

Work queue status
Incident

Custom

74

@ prefect.runtime

76

prefect.runtime module

Home for runtime context access.
Useful for labeling, logs, etc.
Includes:

- deployment: info on the current deployment
- flow_run: info on the current flow run
- task_run: info on the current task run

77

prefect.runtime

from prefect import flow, task
from prefect import runtime

@flow(log_prints=True)

def my_flow(x):
print("My name is", runtime.flow_run.name)
print("I belong to deployment", runtime.deployment.name)
my_task(2)

@task
def my_task(y):
print("My name is", runtime.task_run.name)

print("Flow run parameters:", runtime.flow_run.parameters)
if __name__ == "__main__":
my_flow(x=1)

prefect.runtime

Useful for labeling, logs, etc.

15:04:48.223 | INFO | prefect.engine - Created flow run 'radical-duck' for flow 'my-flow'
15:04:48.224 | INFO | Flow run 'radical-duck' - View at https://app.prefect.cloud/account/9b649228
366c9e4c4/flow-runs/flow-run/7bdce263-37dc-4c08-bb46-38dd534878de

15:04:48.488 | INFO | Flow run 'radical-duck' - My name is radical-duck

15:04:48.490 | INFO Flow run 'radical-duck' - I belong to deployment None

15:04:49.267 | INFO Flow run 'radical-duck' - Created task run 'my_task-@0' for task 'my_task'
15:04:49.267 | INFO Flow run 'radical-duck' - Executing 'my_task-0' immediately...

15:04:49.450 | INFO Task run 'my_task-@' - Flow run parameters: {'x': 1}

| |
| Deo |
15:04:49.449 | INFO | Task run 'my_task-@' - My name is my_task-0
| |
15:04:49.585 | INFO | Task run 'my_task-0' - Finished in state Completed()

78 >

l

e State change hooks

80

State change hooks

Execute code in response to flow run or task run state
changes

from prefect import flow

def my_success_hook(flow, flow_run, state):
print(f"Flow run {flow_run.id} succeeded!")

@flow(on_completion=[my_success_hook])
def my_flow():
return 42

if __name__ == "__main__":
my_flow()

81

State change hooks

15:12:49.063 | INFO | prefect.engine - Created flow run 'opal-marmot' for flow ‘my-flow'

15:12:49.064 | INFO | Flow run 'opal-marmot' - View at https://app.prefect.cloud/account/9b649228-0419-40e1-9e0d-44954b"
66c9e4c4/flow-runs/flow-run/c914257b-d5a3-4e7e-ada7-324d5f2a2851

15:12:49.807 | INFO | Flow run 'opal-marmot' - Running hook 'my_success_hook' in response to entering state 'Completed'

Flow run succeeded!

€914257b-d5a3-4e7e-ada7-324d5f2a2851

<class 'prefect.client.schemas.objects.FlowRun'>

15:12:49.817 | INFO | Flow run 'opal-marmot' - Hook 'my_success_hook' finished running successfully
15:12:49.817 | INFO | Flow run 'opal-marmot' - Finished in state Completed()

State change hooks

Type

on_completion

on_failure

on_cancellation

on_crashed

82

Flow

Task

Description

Executes when a flow or task run
enters a Completed state.

Executes when a flow or task run
enters a Failed state.

Executes when a flow run enters
a Cancelling state.

Executes when a flow run enters
a Crashed state.

83

105 Recap

You’ve seen how to:

Create an active workflow that pauses a flow run
for input from a user

Use a metric trigger in an automation

Get current info into a flow with prefect runtime
Use a state change hook

Lab 105

85

105 Lab

- Create an active workflow that pauses a flow run
for input from a user.

- Print the flow run name in your code with
prefect _runtime

- Use a state change hook to run code when a
flow run state is reached.

- Stretch (if on Pro or Enterprise plan): Use a
metric trigger in an automation.

86

Lab 105: a solution

One person from each group, share your code in
Slack T

Discuss

Questions?

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

set up logging?
do it every hour?
visualize the dependencies?
automatically retry if it fails?
create an artifact for human viewing?
add caching?
add collaborators to run and view - who don’t code?
send me a message when it succeeds?
9. runitin a Docker container-based environment?

12. automatically run a workflow in response to an event?

PN WN =

87

-
O
w
w
w
o
o

89

106 Agenda

Workflow patterns with

- subflows
- run_deployment
- automations

Automation triggers

- custom events
- webhooks
- deployment triggers

l

o Workflow patterns

91

Workflow patterns - prefect.io/blog/workflow-design-patterns

.—/Z?Sk F/z)w /mﬂt/‘q
Monoflow Flow of subflows

F/pw | /Hzﬂl/‘q o n/t”q @ E\/@yﬂL

Flow of deployments Event triggered flow

https://www.prefect.io/blog/workflow-design-patterns

92

You have seen this pattern

.—/Z?S‘k F/ow /mﬂV‘q

Monoflow

F/Dw @ /nﬂ/‘q

Flow of deployments

® [y L

F/ow /Hlﬂl/‘q

Event triggered flow

—® Subflows

94

Workflow patterns - Flow of subflows

& BS‘k F/DW /mﬂ‘”a L4 7?@&{(F/pw /m/]t/‘q
Monoflow Flow of subflows

F/pw @ /nﬂ/‘q

Flow of deployments Event triggered flow

95

Subflow

- Aflow that calls another flow
- Useful for grouping related tasks

Subflows

import httpx
from prefect import flow

@flow
def fetch_cat_fact():
return httpx.get("https://catfact.ninja/fact?max_length=140").json() ["fact"]

@flow
def fetch_dog_fact():
return httpx.get(
"https://dogapi.dog/api/v2/facts",
headers={"accept": "application/json"},
).json() ["data"][@] ["attributes"] ["body"]

@flow(log_prints=True)
def animal_facts():
cat_fact = fetch_cat_fact()
dog_fact = fetch_dog_fact()
print(f"M: {cat_fact} \n&®: {dog_fact}")

if __name__ == "__main__":
animal_facts()

96

97

Timeline view

Flow Runs / ubiquitous-seahorse

(D) Completed)) () 2024/02/12 03:55:31PM (D 4s () None

Flow @3 animal-facts

24 PM| 3:55:25 PM| 3:55:26 PM| 3:55:27 PM 3:55:28 PM| 3:55:20 PM | 3:55:30PM 3:55:31PM | 3:55:32 PM| 3:55:33PM 3:55:34 PM| 3:55:35PM| 3:55:36 PM| 3:55:37PM 3:55:38 PM

v Events

Logs

- fetch-cat-fact / finicky-seal

- fetch-dog-fact / glistening-kangaroo

Task Runs Subflow Runs Results Artifacts Details Parameters

Feb 12th, 2024

Created subflow run 'finicky-seal' for flow 'fetch-cat-fact'
Created subflow run 'glistening-kangaroo' for flow 'fetch-dog-fact'

®: All cats have claws, and all except the cheetah sheath them when at rest.
@ : Hound dogs and long-nosed dogs also have a unique name for their head-type: "Dolichocephalic.”

Finished in state Completed('All states completed.')

l

@ run _deployment

99

Workflow patterns - Flow of deployments (run_deployment)

.—/Z?Sk F/z)w /mﬂt/‘q
Monoflow Flow of subflows

F/pw | /Hzﬂl/‘q o n/t”q @ E\/@yﬂL

Flow of deployments Event triggered flow

run_deployment

run_deployment async ¢

Create a flow run for a deployment and return it after completion or a timeout.

This function will return when the created flow run enters any terminal state or the timeout is reached. If
the timeout is reached and the flow run has not reached a terminal state, it will still be returned. When
using a timeout, we suggest checking the state of the flow run if completion is important moving

forward.

Parameters:

Name

name

parameters

100

Type

Union[str, UUID]

Optional[dict]

Description Default

The deployment id or required
deployment name in

the form:

<slugified-flow-
name>/<slugified-

deployment-name>

Parameter overrides None
for this flow run.

Merged with the

deployment defaults.

run_deployment

from prefect.deployments import run_deployment
run_deployment (

name="pipeline/my-first-managed-deployment", parameters={"lat": 1, "lon": 2}
)

101

102

run_deployment

Opening process...

Created task run 'fetch_weather-8' for task 'fetch_weather'

Executing 'fetch_weather-8' immediately...

Finished in state Completed()

Created task run 'save_weather-8' for task 'save_weather'

Executing 'save_weather-08' immediately...

Finished in state Completed()

Finished in state Completed()

Process for flow run 'sparkling-earthworm' exited cleanly.

04:52:08 PM
prefect.flow_runs.runner

04:52:15 PM
prefect.flow_runs

04:52:15 PM
prefect.flow_runs

04:52:16 PM
fetch_weather-9
prefect.task_runs

04:52:16 PM
prefect.flow_runs

04:52:16 PM
prefect.flow_runs

04:52:17 PM
save_weather-90
prefect.task_runs

04:52:17 PM
prefect.flow_runs

04:52:20 PM
prefect.flow_runs.runner

@ Event-triggered
workflows

Workflow patterns - Event-triggered

& BS‘k F/DW /mﬂ‘”a L4 7?@&{(F/pw /m/]t/‘q
Monoflow Flow of subflows

F/pw @ /nﬂ/‘q

Flow of deployments Event-triggered flow
104

l

e Custom events In
Python

Custom events

Great when working in Python land and want to get
data into an automation &

106

Create custom event to be emitted when code runs

emit_event must provide two args: event and

resource= {"prefect.resource.id: val’}

from prefect.events import emit_event

def emit_name_event(name: str = "kiki"):
"""Emit a basic Prefect event with a dynamically populated name"""
print(f"Hi {name}!")
emit_event(
event=f"{name}.sent.event!",
resource={"prefect.resource.id": f"developer.{name}"},
payload={"name": name},

)

if _name__ == "__main__":
107 emit_name_event()

Run code and head to the Event Feed page

Workspace Events / Kiki sent event!

12:43:37 PM Kiki sent event!
Mar 1st, 2024 kiki.sent.event!
Resource Details Raw
developer.kiki

Event

kiki.sent.event!

Occurred
2024/03/0112:43:37 PM

Click link to see event page

Resource

developer.kiki

Related Resources

None

108

109

See event details on the Raw tab

Workspace Events / Kiki sent event!

IS Raw

"id": "e7daff3e-5ed7-4a29-ba5f-fc9965772ced",
"account”: "9b649228-0419-40e1-9e0d-44954b5c0abb”,
"event": "kiki.sent.event!",

"occurred”: "2024-83-01T17:43:37.151Z2",

w

"payload": {
"name”: "kiki"
},
"received": "2024-03-01T17:43:37.415Z",
"related": [],
"resource”: {
"prefect.resource.id": "developer.kiki"

3,

"workspace": "d137367a-5055-44ff-b91c-6f7366c%e4c4"

Data from event can be used in an automation action

For example: Populate a flow param via a Run
Deployment action

Use emit_event's payload parameter

110

Example: custom event with detailed payload

from prefect.events import emit_event

emit_event(
event=f"bot.{bot.name. lower()}.responded",
resource={"prefect.resource.id": f"bot.{bot.name.lower()}"},
(EVALELER
"user": event.user,
"channel": event.channel,
"thread_ts": thread,
"text": text,
"response": response.content,
"prompt_tokens": prompt_tokens,
"response_tokens": response_tokens,
"total_tokens": prompt_tokens + response_tokens,
| 8
111)

l

o Event webhooks

¢

Event webhooks

- expose a URL endpoint

- provides consistent interface for integrating
external applications with Prefect

- when webhook URL is pinged, creates a Prefect
event - can be used as a trigger in an automation

- great when not in Python land

113

Event webhooks

Add Event Webhook

Name

Description

Your template should produce valid json with an
@ event name and resource id. You can use jinja to
include dynamic values.

Template presets

Static Dynamic CloudEvent

Template

"event": "{{body.event_name}}",

"resource": {

Docs (4

"prefect.resource.id": "product.models.{{ body.m

"prefect.resource.name": "{{ body.friendly_name

"producing-team": "Data Science"

Cancel

114

Create

arted

Event webhooks

- use Jinja2 for dynamic templating
- template should be valid JSON
- create from Ul or CLI

115

Event webhooks

Hit the endpoint provided by Prefect:
curl https://api.prefect.cloud/hooks/your _slug here

116

Event webhooks

See the event that is created under Event Feed in the

Ul

10:24:54 PM

Jun 19th, 2023

117

Demo event
demo.event
Resource

demo.alert.2

Related Resources
prefect-cloud.webhook.791b2034-892f-41eb-81a3-dc9dfbff133c

Event webhooks

4 Use this event as a custom trigger in an automation!

Workspace Events / Issueing

Automate
Details Raw
Copy ID
Event
issueing
Occurred

2023/12/13 08:28:40 AM

Resource

gh-repo-discdiver.41

Related Resources

Webhook &% gh-webhook

118

l

o Deployment triggers

Deployment triggers

Alternative approach for creating an automation:

- define an automation in code

- specify the trigger condition in a
DeploymentTrigger object and pass to .deploy()

- creates the automation when the deployment is
created

120

121

Deployment triggers - the flow to be triggered

from prefect import flow
from prefect.events.schemas import DeploymentTrigger

@flow(log_prints=True)
def downstream_flow(ticker: str = "AAPL") -> str:
print(f"got {ticker}")

Deployment triggers - the trigger

Create a DeploymentTrigger object

downstream_deployment_trigger = DeploymentTrigger(
name="Upstream Flow - Pipeline",
enabled=True,
match_related={
"prefect.resource.id": "prefect.flow.5c933ae4-dd43-4705-90eb-cfdeb4c028fb"
by
expect={"prefect.flow-run.Completed"},

)

See the event specification docs:

docs.prefect.io/cloud/events/#event-specification
122

https://docs.prefect.io/latest/cloud/events/#event-specification

Deployment triggers - create

Pass the trigger object to .deploy and run the script

if __name__ == "__main__":

downstream_flow. from_source(
source="https://github.com/discdiver/pacc-2024.git",
entrypoint="106/deployment-trigger.py:downstream_flow",

) .deploy(
name="ticker-deploy",
work_pool_name="managedl",
triggers=[downstream_deployment_trigger],

123

Another way to begin automation creation in the UI:

- Start from a deployment page =) Run [>
- Click the + Add button under Schedules
Triggers crory e cvry | @
- Pre-populates the automation & |
action with the deployment run Hourly ®
+ Schedule

Triggers
+ Add

124

125

Specifying an automation trigger

To create a custom
trigger check out an
event in the Ul (Raw tab)

You can copy/paste and
adjust in the trigger
JSON.

See the Events docs.

Workspace Events / Automation created

Detail Raw
{

"id": "al7baedl dcal-9f1¢
ccount”: "9b6 0419-40e dabt
vent"” prefec ud.autom
ccurred”: "20 19:47
ayload”: {
name "Upstre ell",
enab : tru
trig e ol

: {1,

na lated": {

5 t fect.f
>

= {Ep

X Sl

; t.flow
1,

for_each”: [J,
'po : "Reac

b 1 S 1S

: 0,
null
Hin

106 Recap

You've seen how to use several workflow patterns with

- subflows
- run_deployment
- automations
- custom events defined in Python
- webhooks
- trigger defined in code at deployment creation

126

106 Lab

- Create a deployment that uses a subflow

- Create a second deployment that uses
run_deployment

- Stretch: Create a webhook and an automation that
runs a deployment when that webhook fires

- Stretch: Create a custom event in Python that
triggers a notification action in an automation

- Super-stretch: Create a deployment that contains a
trigger defined in Python code

127

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

1. setuplogging?
2. doitevery hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
/. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. runitin a Docker container-based environment?
10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run a workflow in response to an event?

128

Wrap

Brief feedback survey

Please let us know what went well and what could be

l@"

improved. g%

130

Congratulations!!!

(V4

PREFECT ASSOCIATE
CERTIFICATION

131

e
C
)
e
C
O
@)
)
-
C
O
an

PREFECT

133

Bonus content

- Prefect variables

- Task runners & async code

- Testing

- Prefect REST API

- Upload data to AWS S3

- Self hosted server instance

- Prefect profiles

- Deploy multiple flows

- Guided deployment creation with prefect deploy
- Deployments with prefect.yaml/
- CI/CD with GitHub Actions

- Helm chart

- Terraform provider

e

Variables

Prefect variables

- String values evaluated at runtime
- Store and reuse non-sensitive, small data
- Create via Ul or CLI

135

Prefect variables

Only string values

New variable

Name

my_variable]

Value

3.14159

Tags

136

137

Prefect variables

Flow Runs

Flows

Deployments

Work Pools

Blocks

Variables

Notifications

Task Run Concurrency

Variables +

3 Variables ;O\ Search variables W ’ AtoZ ¢ | ‘ Filter by tags |
(] Name Value Updated Tags

() age twenty-two 2023/04/13 03:36:53 PM

() height 72 2023/04/13 04:00:32 PM

() url abc123.com 2023/04/13 04:01:15 PM

l

o Task runners for

concurrency
|

Concurrency

- Helpful when waiting for external systems to
respond

- Allows other work to be done while waiting

- Prefect's ConcurrentTaskRunner replaces need for
using Python’s async, await, etc.

139

l

Concurrency & Parallelism:
‘o via task runners

140

Concurrency & Parallelism

- Concurrency: single-threaded, interleaving, GIL
locked
- Parallelism: multiple events run at the same time

Your Prefect code runs sequentially by default

141

Concurrency

Concurrency

- Helpful when waiting for external systems to
respond (IO / network-bound work)

- Prefect’'s ConcurrentTaskRunner allows you to
concurrently execute code without async syntax

143

144

Concurrency

from prefect import flow, task
from prefect.task_runners import ConcurrentTaskRunner

@task

def stop_at_floor(floor):
print(f"elevator moving to floor {floor}")
print(f"elevator stops on floor {floor}")

@flow(task_runner=ConcurrentTaskRunner())
def elevator():
for floor in range(3, 0, -1):
stop_at_floor.submit(floor)

elevator()

145

Concurrency

elevator
elevator
elevator
elevator
elevator
elevator

moving to floor 3
stops on floor 3
moving to floor 1
stops on floor 1
moving to floor 2
stops on floor 2

Task Runners

- Specify in flow decorator

- ConcurrentTaskRunner is ready by default

- Use .submit() when call a task to return a
PrefectFuture instead of direct result

146

l

a Task runners for

true parallelism

Parallelism

- Two or more operations happening at the same
time on one or more machines

- Helpful when operations limited by CPU
- Many machine learning algorithms parallelizable

148

Task Runners for parallelism

- DaskTaskRunner
- RayTaskRunner

Both require an integration package:

- prefect-dask
- prefect-ray packages

149

150

DaskTaskRunner for parallelism

from prefect import flow, task
from prefect_dask.task_runners import DaskTaskRunner

@task
def say_hello(name):
print(f"hello {name}")

@task
def say_goodbye(name):
print(f"goodbye {name}")

@f low(task_runner=DaskTaskRunner())
def greetings(names):
for name in names:
say_hello.submit(name)
say_goodbye.submit(name)

if __name__ == "__main__":
greetings(["arthur", "trillian", "ford", "marvin"])

DaskTaskRunner for parallelism

- Can see the Dask Ul if have bokeh package
installed: pip install bokeh
- Ul will be linked in the terminal at run time

151

l

X Prefect REST API

If you want to talk to the APl without Python

Cloud and server REST API interactive docs:

docs.prefect.io/latest/api-ref/rest-api

curl or use an HT TP client (httpx, requests)

1558

https://docs.prefect.io/latest/api-ref/rest-api/

PrefectClient to interact with the REST API

Or use the built-in PrefectClient for convenience

from prefect import get_client
async with get_client() as client

response = await client.hello
print response.json e |

docs.prefect.io/quides/using-the-client

154

https://docs.prefect.io/latest/guides/using-the-client/

Common methods

- create flow_run from deployment
- read flow run/read flow runs

- update deployment

- delete flow run

qithub.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py

159

https://github.com/PrefectHQ/prefect/blob/main/src/prefect/client/orchestration.py

e

Testing

Testing

- Context manager for unit tests provided
- Run flows against temporary local SQLite db

from prefect import flow
from prefect.testing.utilities import prefect_test_harness

@flow
def my_favorite_flow():
return 42

def test_my_favorite_flow():
""“"basic test running the flow against a temporary testing database"""
with prefect_test_harness():
157 assert my_favorite_flow() == 42

Testing

- Use in a Pytest fixture

from prefect import flow
import pytest
from prefect.testing.utilities import prefect_test_harness

@pytest.fixture(autouse=True, scope="session")
def prefect_test_fixture():
with prefect_test_harness():

yield
158

e Upload data to
AWS S3

Steps

Install prefect-aws

Register new blocks

Create S3 bucket

Create S3Bucket block from Ul or CLI
Use in a flow

ok wbh =

160

Install prefect-aws

pip install -U prefect-aws

161

162

Register new blocks

prefect blocks register -m prefect_aws

Successfully registered 5 blocks

Registered Blocks

AWS Credentials
AWS Secret

ECS Task

MinIO Credentials
S3 Bucket

See block types & blocks from CLI

prefect block type Is
prefect block Is

163

Make an S3Bucket block

A\ S3Bucket block from prefect-aws != S3 block
that ships with Prefect

- Both block types upload and download data
- S3Bucket block has many methods
- We are showing how to use S3Bucket block

164

Create S3 Bucket

Amazon S3 > Buckets » Create bucket

Create bucket i

Buckets are containers for data stored in S3. Learn more [/}

General configuration

Bucket name

Bucket name must be globally unique and must not contain spaces or uppercase letters. See rules for bucket naming [}
AWS Region

US East (N. Virginia) us-east-1

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

166

Create S3Bucket block from Ul

aws

S3 Bucket

Block used to store data using AWS S3
or S3-compatible object storage like
MinlO.

get-directory put-directory

read-path write-path

Add +

167

Create S3Bucket block from Ul

Blocks / Choose a Block / S3 Bucket / Create

Block Name

Bucket Name
Name of your bucket.

|

Credentials

_ MinlOCredentials

A block containing your credentials to AWS or MinlO.
AwsCredentials (Optional)
Block used to manage authentication with AWS. AWS authentication is

handled via the boto3 module. Refer to the
boto3 docs?
for more info about the possible credential configurations.

L Add +

Bucket Folder (Optional)

A default path to a folder within the S3 bucket to use for reading and writing objects.

S3 Bucket

Block used to store data using
AWS S3 or S3-compatible
object storage like MinlO.

get-directory
put-directory read-path
write-path

168

AWS Credentials block from Ul

Use the nested AWS Credentials block as needed

Blocks / Choose a Block /| AWS Credentials / Create

Block Name

|

Region Name (Optional)
The AWS Region where you want to create new connections.

|

Profile Name (Optional)

aws

AWS Credentials

Block used to manage
authentication with AWS. AWS
authentication is handled via the
‘boto3" module. Refer to the
[boto3 docs]...

The profile to use when creating your session.

AWS Access Key ID (Optional)
A specific AWS access key ID.

|

AWS Credentials block from Ul

Leave most fields blank.

Probably use AWS Access Key ID & AWS Access
Key Secret.

AWS Access Key Secret (Optional)
A specific AWS secret access key.

|
Cancel -

169 ?

170

Or create blocks with Python code

from time import sleep
from prefect_aws import S3Bucket, AwsCredentials

def create_aws_creds_block():
environment variables can be helpful for creating credentials blocks
do not store credential values in public locations (e.g. GitHub public repo)
my_aws_creds_obj = AwsCredentials(
aws_access_key_id="123abc",
aws_secret_access_key="ab123",
)
my_aws_creds_obj.save(name="my-aws—-creds-block", overwrite=True)

def create_s3_bucket_block():
aws_creds = AwsCredentials. load("my-aws—creds—block")
my_s3_bucket_obj = S3Bucket (
bucket_name="my-first-bucket-abc", credentials=aws_creds
)
my_s3_bucket_obj.save(name="s3-bucket-block", overwrite=True)
if _ name__ == "_ main__ ":
create_aws_creds_block()
sleep(5) # ensure server has time to create credentials block before loading
create_s3_bucket_block()

171

View block in the Ul

Blocks / my-aws-creds-block

May 3rd, 2023

Block document) my-aws-creds-block

Paste this snippet into your flows to use this block. Need help? View Docs 4

from prefect_aws import AwsCredentials o

aws_credentials_block = AwsCredentials.load("my-aws-creds-block")

Region Name
Profile Name

AWS Access Key ID
123abc

AWS Session Token

AWS Client Parameters

{ "config": null, "verify": true, "use_ssl": true, "api_version": ", "endpoint_url": "*, “verify_cert_path": "" }

AWS Access Key Secret

sk

s

May 3rd, 2023

aws

AWS Credentials

Block used to manage
EGEINTEN RV GIAVSIALS)
authentication is handled via the
‘boto3" module. Refer to the
[boto3 docs]...

Flow code loads S3 block and uploads data file

from pathlib import Path
from prefect import flow
from prefect_aws.s3 import S3Bucket

@flow()
def upload_to_s3(color: str, year: int, month: int) —> None:

"""The main flow function to upload taxi data"""

path = Path(f"data/{color}/{year}/{color}_tripdata_{year}-{month:02}.parquet")
s3_block = S3Bucket.load("s3-bucket-block")
s3_block.upload_from_path(from_path=path, to_path=path)

if _name__ == "__main__":
upload_to_s3(color="green", year=2020, month=1) -’
172

Use your flow code!

- Can test with python my _script.py
- Then create a deployment and run it! &%

173

See file in S3 bucket

Amazon S3 > Buckets » prefect-aws-demos » data/ > green/ > 2020/

Copy S3 URI

2020/

Properties

Objects (1)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

grant them permissions. Learn more Z

Actions Vv H Create folder

Q. Find objects by prefix

Name Type Last modified Size Storage class

D green_tripdata_2020-01.parquet parquet May 3, 2023, 17:31:04 (UTC-04:00) 6.9 MB Standard

l

o Self-hosted server

Instance
@

Self-hosted server instance

Alternative to Prefect Cloud: host your own Prefect
server instance

- Backed by SQLite db by default

- Or use PostgreSQL in production

- Similar Ul

- No events, push work pools, email server,
authentication, user management, error
summaries, etc.

176

Self-hosted server instance

- Switch to a new profile
- Use an ephemeral API (default) or set the API
endpoint (required if in a Docker container)

177

Self-hosted server instance

Start a server in another terminal with:

prefect server start

\
/
I

\
/ _|
\

|
[
||
Configure Prefect to communicate with the server with:

prefect config set PREFECT API URL=http://127.0.0.1:4200/api

View the API reference documentation at http://127.0.0.1:4200/docs

Check out the dashboard at http://127.0.0.1:4200
178

179

Self-hosted server instance

Head to the Ul at http://127.0.0.1:4200

N

Dashboard
Flow Runs
Flows
Deployments
Work Pools
Blocks
Variables
Notifications
Concurrency

Artifacts

Settings

Dashboard

Flow Runs

3 total

©s000c000000000000000cselocccccccccall

o

You currently have 0 failed or
crashed runs.

All tags

Task Runs

0o
0 Completed

Active Work Pools

default-agent-pool
Polled Work Queues
N/A

docker-pool
Polled Work Queues
N/A

my-pool

Polled Work Queues
17d 7h ago

EE——
Late runs Completes
0 N/A
. 0 total
Late runs Completes
0 N/A
erererorerd 1)
Late runs Completes
0 (43s avg.) N/A

http://127.0.0.1:4200

Self-hosted server instance

Required when running Prefect inside a container:

PREFECT_API_URL="http://127.0.0.1:4200/api"

See Prefect Helm Chart if running on Kubernetes
github.com/PrefectHQ/prefect-helm

180

http://127.0.0.1:4200/api
https://github.com/PrefectHQ/prefect-helm

~® Prefect profiles

Prefect profiles

If you don't already have a profile with Prefect Cloud
you want to use for this course, create a new profile

Create: prefect profile create my cloud profile

182

Prefect profiles

Inspect: prefect profile inspect my cloud profile

Select: prefect profile use my cloud _profile

183

l

o Deploy multiple flows
with serve

185

Deploy multiple flows

import time
from prefect import flow, serve

@flow
def slow_flow(sleep: int = 60):
"Sleepy flow — sleeps the provided amount of time (in seconds)."”

time.sleep(sleep)

@flow
def fast_flow():
"Fastest flow this side of the Atlantic."

return

if __name__ == "__main__":
slow_deploy = slow_flow.to_deployment(name="sleeper-scheduling")
fast_deploy = fast_flow.to_deployment(name="fast-scheduling")
serve(slow_deploy, fast_deploy)

Deploy multiple flows

- Import serve

- use to_deployment() method

- use serve function and pass it the deployment
objects

186

l

o Guided deployment
creation

Deployments: ETL code

@task
def fetch_cat_fact():
return httpx.get("https://catfact.ninja/fact?max_length=140").json() ["fact"]

@task
def formatting(fact: str):
return fact.title()

@task
def write_fact(fact: str):
with open("fact.txt", "w+") as f:
f.write(fact)
return "Success!"

188

189

Deployments: ETL code

@flow

def pipe():
fact = fetch_cat_fact()
formatted_fact = formatting(fact)
msg = write_fact(formatted_fact)
print(msg)

190

Send deployment to server

From the root of your repo run:

prefect deploy

Choose the flow you want to put into a deployment

? Select a flow to deploy [Use arrows to move; enter
to select; n to select none]

T T

> pipe 104/flows.py
hello flow 102/cachingl.py
log it 102/1logflow.py

191

Send deployment to server

Enter a deployment name and then n for no schedule.

? Deployment name (default): first deploy
? Would you like to schedule when this flow runs? [y/n] (y):

Create a work pool

? Looks like you don't have any work pools this flow can be deployed to. Would you like to

create one? [y/n] (y): Yy
? What infrastructure type would you like to use for your new work pool? [Use arrows to

move; enter to select]

Type Description

> process Execute flow runs as subprocesses on a worker. Works
well for local execution when first getting started.

ecs Execute flow runs within containers on AWS ECS. Works
with existing ECS clusters and serverless execution via
AWS Fargate. Requires an AWS account.

192

Work pools

Give your work pool a name.

Or, if you have existing work pools, choose one

? Which work pool would you like to deploy this flow to? [Use arrows to move; enter to select]

Work Pool Name Infrastructure Type Description
docker-work docker
local-work process
> my-pool process
prod-pool kubernetes
staging-pool kubernetes
zoompool process

193 ?

Specify flow code storage

Prefect auto-detects if you are in a git repo.

No auto-push.

? Your Prefect workers will need access to this flow's code in order to run
it. Would you like your workers to pull your flow code from its remote
repository when running this flow? [y/n] (Yy): Y

? Is https://github.com/discdiver/pacc-2023.git the correct URL to pull your
flow code from? [y/n] (y): Y

? Is main the correct branch to pull your flow code from? [y/n] (y): Yy

? Is this a private repository? [y/n]: n

Deployment 'pipe/first deploy' successfully created with id
'0£45657b-86d7-4141-a56a-elce47b90£f1d"’.

194 N

Deployments in the Ul

The deployment lives on the server. See it in the Ul.

? Q Deployments

jeffprefectio 8 Deployments Q Search deployments AtoZ ¢ All tags ¢
storage-guide-ex

Name Schedule Tags Applied By
Dashboard
Flow Runs hi / default Every 3 days, 20 hours, 52 minutes, 23 seconds jeffprefectio -
Flows
Deployments walk-route / deliver-mail jeffprefectio .
Work Pools
Blocks fetch-weather / deploy-1 jeffprefectio -

195

Save deployment configuration to prefect.yaml

? Would you like to save configuration for this deployment for
faster deployments in the future? [y/n]: y

Deployment configuration saved to prefect.yaml! You can now deploy
using this deployment configuration with:

$ prefect deploy -n first deploy

You can also make changes to this deployment configuration by
making changes to the prefect.yaml file.

196

Recap of our setup

- Deployment & work pool created on Prefect Cloud

- Worker runs on local machine

- Worker polls Prefect Cloud, looking for scheduled
work in the my_pool work pool

- Deployment configuration saved to prefect.yaml

197

Schedule a run - what happened?

- Running worker finds scheduled work in my_pool work pool.

- Worker and work pool are typed. Local subprocess in this
case.

- Worker creates a local subprocess to kick off flow run.

- Flow code cloned from GitHub into temporary directory.

- Flow code runs.

- Metadata and logs sent to Prefect Cloud.

- Temporary directory deleted.

198

l

Deployment creation
with prefect.yaml

e

prefect.yaml

Generic metadata about this project
name: pacc-2023
prefect-version: 2.10.18

build section allows you to manage and build docker images
build: null

push section allows you to manage if and how this project is
push: null

pull section allows you to provide instructions for cloning
pull:
- prefect.deployments.steps.git_clone:
repository: https://github.com/discdiver/pacc-2023.git
200 branch: main

prefect.yaml

Configuration for creating deployments

- pull step (repository & branch): from git repo

201

prefect.yaml

- deployments:

Config for one or more deployments
deployments:

Required keys:
- name: deploymentl
entrypoint: 202/flows.py:pipe

- name
work_pool:
- entrypoint name: local-work
- work pOOI -> hame - name: deployment2
I entrypoint: 202/flows2.py:pipe2
work_pool:

name: local-work
202

Can override steps above on per-deployment basis

deployments:
- name: prod-deployment
entrypoint: 202/flows.py:pipe

work_pool:
name: prod-pool
schedule:
interval: 600
pull:

- prefect.deployments.steps.git_clone:
repository: https://github.com/discdiver/pacc-london-2023.git
branch: prod
access_token: "{{prefect.blocks.secret.gh-secret}}"

- name: staging-deployment
entrypoint: 202/flows.py:pipe

work_pool:
name: staging-pool
pull:

- prefect.deployments.steps.git_clone:
repository: https://github.com/discdiver/pacc-london-2023.git
branch: staging

203

Re-deploy a deployment

Requires a prefect.yaml file

prefect deploy

? Would you like to use an existing deployment configuration? [Use arrows to
move; enter to select; n to select none]

Name Entrypoint Description

> first deploy 104/flows.py:pipe

204 :'

Deploy multiple deployments at once

Deploy all deployments in a prefect.yaml file:

prefect deploy --all

205

prefect deploy

If choose docker typed work pool you will be asked
docker-related questions

Work Pool Name Infrastructure Type Description

> docker-pool docker
my-pool process

? Would you like to build a custom Docker image for this deployment? [y/n]
(n): []

206

207

Method 1: prefect deploy

Use the defaults for the work pool
OR
Build a custom Docker image with flow code

- Push image to a Docker registry
- Use existing Dockerfile
- Auto-includes packages in requirements.txt

Follow the prompts. @

208

Resulting prefect.yaml

- name: dock-interact
version:
tags: []
description:
entrypoint: 104/flows.py:pipe
parameters: {}
work_pool:
name: docker-pool
work_queue_name:
job_variables:
image: '{{ build-image.image }}'
schedule:
build:
- prefect_docker.deployments.steps.build_docker_image:
requires: prefect-docker>=0.3.1
id: build-image
dockerfile: auto
image_name: discdiver/dock-interact
tag: 0.0.1

- CIl/CD with
GitHub Actions

GitHub Actions with deployments

- CI/CD - when you push code or make a PR
automatically take an action
- Pre-built Github Action to deploy a Prefect

deployment
- dithub.com/marketplace/actions/deploy-a-prefec

t-flow

210

https://github.com/marketplace/actions/deploy-a-prefect-flow
https://github.com/marketplace/actions/deploy-a-prefect-flow

GitHub Action

name: Deploy a Prefect flow
on:
push:
branches:
— main
jobs:
deploy_flow:
runs-on: ubuntu-latest
steps:
— uses: checkout@v3

- uses: actions/setup-python@v4
with:
python-version: '3.10'

— name: Run Prefect Deploy

uses: PrefectHQ/actions—-prefect—-deploy@vl

with:
prefect-api-key: ${{ secrets.PREFECT_API_KEY }}
prefect-workspace: ${{ secrets.PREFECT_WORKSPACE }}
requirements—-file-path: ./examples/simple/requirements.txt
entrypoint: ./examples/simple/flow.py:call_api

211 additional-args: ——cron '30 19 * % @'

- Helm Chart

Prefect Helm Chart for K8s

Provides a variety of functionality
Creating workers is a popular use case.

See more in the docs:
qithub.com/PrefectHQ/prefect-helm/tree/main/charts/prefect-worker

213

https://github.com/PrefectHQ/prefect-helm/tree/main/charts/prefect-worker

l

Terraform provider

Prefect Cloud Terraform Provider

reqistry.terraform.io/providers/PrefectHQ/prefect/latest/docs

HashiCorp

W Terraform

215

https://registry.terraform.io/providers/PrefectHQ/prefect/latest/docs

4 A g
\/\/ N ¥ Ul
\ ,

A ““0‘0’0’00.. 0 . .
0000000000
L?MTOOOOAZY’QQO
: ...oAqlnxxv
DRRRRARAN X
- i " ..00000000"0‘
- .O.a.@.@o@w@waw&

OO
o
o%% 6

PACC
Prefect Associate
Certification Course

PREFECT

