
Building the Control
Layer for Agentic AI
with andAI Gateway
MCP Servers

Abhishek Choudhary 
(CTO, TrueFoundry)

in Co l laborat ion with

(AI product lead, LinkedIn TopVoice)

Greg Coquillo

As the AI landscape evolves at an unprecedented pace, enterprise
adoption of Large Language Models (LLMs) has reached an
inflection point. Yet, with this rapid integration comes a web of
operational challenges—API fragmentation, inconsistent latency,
 throttling unpredictability, opaque cost structures, and an absence of
robust governance. These are not marginal issues; they are
existential bottlenecks that prevent AI from moving beyond
experimentation to scalable, production-grade infrastructure.

This ebook introduces the concept of the AI Gateway—a new
architectural layer designed to unify, govern, and optimize AI
workloads across
organizations. Unlike traditional API Gateways, which are built for
deterministic, schema-bound services, AI Gateways are
fundamentally semantic-aware, context-sensitive, and capable of
mediating between human language and machine execution.

An AI Gateway does more than route traffic. It abstracts a
 constantly changing set of model APIs, enforces semantic
guardrails, orchestrates multi-model fallbacks, and captures fine-grained
observability
metrics—from token usage to model cost. It serves as the
policy-enforced access layer to both LLMs and enterprise tools,
integrating seamlessly with identity providers, role-based controls, and
internal systems of record.

Through this book, we aim to arm platform engineers, MLOps teams, and
technical architects with a deep understanding of why AI
Gateways are not just useful, but foundational. You will explore
architectural patterns,
evaluate tradeoffs between building and buying, and understand how
modern gateways integrate with emerging protocols like MCP (Model
Context Protocol) and A2A (Agent-to-Agent communication).

Whether you're operating in a highly regulated environment or building
globally distributed AI-native products, this guide is a practical and
technical roadmap to designing and scaling your AI infrastructure with
confidence

Preface
As the AI landscape evolves at an unprecedented pace, enterprise
adoption of Large Language Models (LLMs) has reached an
inflection point. Yet, with this rapid integration comes a web of
operational challenges—API fragmentation, inconsistent latency,
 throttling unpredictability, opaque cost structures, and an absence of
robust governance. These are not marginal issues; they are
existential bottlenecks that prevent AI from moving beyond
experimentation to scalable, production-grade infrastructure.

This ebook introduces the concept of the AI Gateway—a new
architectural layer designed to unify, govern, and optimize AI
workloads across
organizations. Unlike traditional API Gateways, which are built for
deterministic, schema-bound services, AI Gateways are
fundamentally semantic-aware, context-sensitive, and capable of
mediating between human language and machine execution.

An AI Gateway does more than route traffic. It abstracts a
 constantly changing set of model APIs, enforces semantic
guardrails, orchestrates multi-model fallbacks, and captures fine-grained
observability
metrics—from token usage to model cost. It serves as the
policy-enforced access layer to both LLMs and enterprise tools,
integrating seamlessly with identity providers, role-based controls, and
internal systems of record.

Through this book, we aim to arm platform engineers, MLOps teams, and
technical architects with a deep understanding of why AI
Gateways are not just useful, but foundational. You will explore
architectural patterns,
evaluate tradeoffs between building and buying, and understand how
modern gateways integrate with emerging protocols like MCP (Model
Context Protocol) and A2A (Agent-to-Agent communication).

Whether you're operating in a highly regulated environment or building
globally distributed AI-native products, this guide is a practical and
technical roadmap to designing and scaling your AI infrastructure with
confidence

Preface

Contents
01

03

04

02

Chapter 1: Why is AI Gateway Emerging as a Central
Control Plane in the GenAI Stack Today

API Inconsistency Across Model Providers
Provider Instability and Runtime Failures
Latency Variability and SLA Violations
Dynamic Rate Limiting and Throttling Constraints
Cost Attribution and Budget Governance
Redundant Prompt Processing and Semantic Overhead
Inconsistent Guardrails and Risk Exposure
Multi-Model, Multi-System Complexity

Chapter 2: What is an AI Gateway?
Core Objectives of an AI Gateway
Key Capabilities with Real Examples

Chapter 3: Why Traditional API Gateways Fall
Short for AI Workloads

Semantic Blindness in API Gateways
Lack of Token Economics
Model Parameter Discrepancies
Observability Limitations
Weak Content Governance

Chapter 4: Enterprises Should
Think About AI Gateways
Initial Simplicity, Long-Term Complexity
Strategic Focus: Build Differentiation, Buy Infrastructure

05

07

08

09

06

Chapter 5: Architecture of the AI Gateway

Key Architectural Priorities
TrueFoundry Reference Architecture
Control Plane and Data Flow Separation
Performance Benchmarks

Chapter 6: Future of AI Gateway — Integration with MCP
and A2A Protocols

MCP Server: Unified Tool Interface
AI Gateway + MCP: Execution Layer
Agentic Workflows

Chapter 7: Making AI Gateways Enterprise-Ready - From Self-
Hosted Models to and Multi-Region Gateways

On-Premise and Hybrid Deployments
Multi-Region, Global Availability

Chapter 8: Security, Compliance, and Governance in AI
Gateways

Chapter 9: Inside TrueFoundry’s AI Gateway - The
Operational Layer for Agentic AI

The Necessity
of an AI Gateway

Chapter 1

Claude

max_tokens_to_sample

0.0_1.0

stop_sequences

1.2 Provider Instability and Runtime
Failures
Despite high service-level agreements, model APIs from providers such as
OpenAI and Anthropic exhibit periodic degradation or downtime due to
infrastructure constraints, upstream dependencies, or high demand.

As organizations integrate LLMs into production systems, they encounter
an increasingly fragmented and unstable ecosystem. Disparate APIs,
inconsistent performance, complex cost structures, and weak gover-
nance mechanisms present critical risks to operational reliability and
scalability. An AI Gateway serves as the central abstraction layer that
addresses these challenges systematically.

1.1 API Inconsistency Across Model
Providers
Each third-party model provider exposes its own unique API interface,
differing in parameter names, configuration ranges, and supported features.
For example:

Implication: Engineering teams must implement custom handling logic
per provider, which results in duplicated effort, increased complexity,
and limited interoperability.

Concepts OpenAI Gemini Claude

Max token

Temperature
Range

Stop
Sequence

max_tokens max0utputTokens

0.0_2.0 0.0_1.0

stop array X not supported

Here s̓ a screenshot of OpenAI s̓ status page from Feb to May 2025.

System Status < Feb 2025 - May 2025 >

iAPIs 15 components ^

iChatGPT 20 components

99.91% uptime

99.55% uptime

100% uptime

99.97% uptime

99.92% uptime

^

^

iSora 5 components

iPlayground

iLabs

Operational Risk: Applications directly coupled to a single provider are
prone to systemic failures during outages or throttling events. Resiliency
strategies (e.g., fallbacks, retries) are not standardized across clients.

1.3 Latency Variability and SLA
Violations

Here s̓ a graph of the latency variance of a few models over a course of
a month

Empirical latency measurements across providers show fluctuations that
exceed acceptable SLA
thresholds for production-grade applications.

Consequence: Systems without adaptive routing or latency-aware
orchestration risk service degradation and customer dissatisfaction.

1.4 Dynamic Rate Limiting and
Throttling Constraints

1.5 Cost Attribution and Budget
Governancev

Engineering Complexity: Without centralized quota enforcement and
rate-aware queuing, systems face unpredictable failures or degraded
throughput under load.

Model providers enforce rate limits on a per-account, per-model, and
sometimes per-tenant basis. These limits can change based on contractual
tier, usage history, or platform updates.

LLM usage incurs significant costs, often billed by:

 Token counts (input + output)
 Model type (base vs. fine-tuned)
 Deployment region or platform (e.g., Azure OpenAI vs. OpenAI direct)

However, billing data is distributed across platforms (e.g., Azure Monitor,
AWS CloudWatch, OpenAI Dashboards), making cost attribution across teams,
models, or environments cumbersome.

Challenge: Lack of unified cost telemetry impairs budgeting, forecasting,
and internal chargeback models.

Model Tier Quota Limit in toker per minute
(TMP)

Request per
minute

gpt-4o

gpt-4o-mini

gpt-4o-mini

gpt-4 (turbo-
2024-04-09)

gpt-4 (turbo-
2024-04-09)

gpt-4o

Enterprise
agreement

Enterprise
agreement

Enterprise
agreement

Default

Default

Default

30M 180K

300K

12K

12K

2.7K

2.7K

50M

02M

450K

02M

450K

Security policies — such as PII redaction, brand tone enforcement, or jailbreak
protection — are often inconsistently implemented across applications.

1.6 Redundant Prompt Processing
and Semantic Overhead
LLMs frequently process repetitive, low-variance inputs (e.g., greetings,
standard queries). A single “Hiˮ to GPT-4o can consume ~10 tokens. At high
volumes, this leads to measurable financial waste.

Optimization Opportunity: Semantic caching — caching responses based on
prompt intent rather than exact text — can reduce costs significantly without
affecting application fidelity.

1.7 Inconsistent Guardrails and Risk
Exposure

Risk: Without centralized semantic input/output validation, enterprises face
elevated exposure to data leaks, regulatory violations, and reputational
harm.

LLM Applications

Prompt LLM Output

LLM Applications

Prompt

1.8 Agentic Applications Face a
Fragmented Backend
A single intelligent application may interact with:

Multiple LLM providers (e.g., OpenAI, Claude, Mistral)
Enterprise data sources (e.g., SQL, email systems, konwledge
bases)
Authentication and authorization layers
Operational tools and APIs (e.g., Slack, Jira, Confluence) via
MCP Servers

In such a topology, prompt orchestration, session management, and
response synthesis become operationally complex—especially when
workflows span multiple models and tools.

Architectural Burden: Without an abstraction layer like an AI Gateway,
each application must independently solve for model selection, routing
logic, security enforcement, tool invocation (via MCP), and observability.
This creates duplication, brittleness, and scaling friction across teams.

 Introducing
the AI Gateway

Chapter 2

In response to the architectural challenges outlined in the previous
chapter, the AI Gateway emerges as a critical infrastructure layer for
enterprise -grade AI adoption. It performs the role of a centralized
control plane —abstracting complexity, standardizing access to models,
enforcing gover-nance, and optimizing operational efficiency.

What is an AI Gateway?
An AI Gateway is a middleware component that sits between AI-powered
applications and various LLM or generative model providers. Its core
function is to serve as a unified entry point and control surface for AI
workloads, much like how an API Gateway mediates between clients and
backend services.

Core Objectives:
Abstraction: Normalize heterogeneous model APIs into a single interface
Routing: Dynamically select and switch between models and providers
Governance: Enforce policies related to security, compliance, and content
safety
Optimization: Implement semantic caching, fallback strategies, and cost
controls
Observability: Enable telemetry across prompts, responses, costs, and
model behavior

Unified Model
Access

Routing &
Fallbacks

CLI, SDK, &
 UI Tools

Rate Limit &
Quota Management

Semantic Caching

Guardrails &
Policy Controls

Multi-Provider
Cost Monitoring

Key Capabilities of an AI Gateway

Without an AI Gateway

Capability What It Does Enterprise Example

Observability
& Tracing

Integrates with 100–250+
LLMs via a single API

Routes based on latency, cost,
region; retries automatically

Access model integration,
configs via UI, CLI & SDK

Controls request count, token
usage, per user/team/model

Deduplicates prompts at intent
level for cost and latency savings

Enforces content policies,
redacts PII, prevents jailbreaks

Tracks usage & spend across
providers, teams, and keys

Logs full prompt→response path,
metadata, user, latency

One endpoint handles GPT-4,
Claude, local Mistral, etc.

.

If GPT-4 throttles, automatically
switch to Claude for the same

prompt.

Easy to adopt AI Gateway with
minimal friction across

interfaces

Limit GPT‑4 to 10 requests/min
for junior users; throttle high-

volume clients

Reuses responses for repeated
queries like “Helloˮ or FAQ

requests.

!"#$%&#'(&))*+,#-'.+,/0,'#'1/+
2&#&+3/4$-/+%$2/)+,"3%',,'$05+
/04$-(/+'0#$)/-&0(/+6)#/-,7

8-$1'2/,+2&,93$&-2,+4$-+,./02+
./-+#/&%+&02+%$2/):+&)/-#+$0+

($,#+$1/--"0,7

Trace a user prompt s̓ path:
model A fallback to model
 B → cost variance → error

handling

MCP & Tool
Integration

A2A Agent
Coordination

DeploymentFlexibility
- On-Prem/Hybrid

Secret and Key
Management

Advanced
Features

Discover and invoke
enterprise tools like
Slack, Jira, Datadog

“Send a message to Slack
channelˮ simply becomes

 gateway logic.

Enables structured
interaction between

multiple agents

Agents use the gateway s̓
messaging layer for task
delegation and context

sharing

Supports Kubernetes,
on-prem, cloud, air-
gapped, multi-region

deployment

Deploy EU-only models
or on-prem for compliance

and low latency.

Secure vault for
provider credentials

Store API keys securely
across teams, projects etc

Canary testing, batch
processing, fine-tuning

pipeline integration

Test new model updates
 safely; batch multiple

prompts in one API call for
throughput; run fine-

tuning jobs.

Chapter 3

Why Traditional API
Gateways Fall Short for

AI Workloads

While API Gateways excel at managing restful services, they lack the
nuanced capabilities required for AI-specific tasks. Here's an in-depth
look at the limitations of API Gateways in the context of AI workloads and
the specialized functionalities that AI Gateways provide.

Lack of Semantic Understanding
API Gateways are designed to handle structured data and predefined
endpoints. They operate effectively with deterministic inputs and outputs,
such as JSON payloads. However, AI workloads often involve unstruc-
tured data, such as natural language prompts, which require semantic
understanding and processing. API Gateways lack the capability to
interpret and manipulate such data effectively.

Inadequate Support for Model
Specific Parameters

Different LLM providers have varying API structures, parameter names,
and configurations. For instance, the parameter for controlling output
length might be max_tokens in one model and maxOutputTokens in
another. API Gateways are not inherently designed to handle these
discrepancies, leading to increased complexity in managing multiple
models.

Observability and Monitoring
API Gateways provide basic monitoring capabilities, such as request
counts and response times. However, they do not offer insights into
AI-specific metrics like token usage, model performance, or
prompt-response analysis. This lack of observability hampers the ability
to monitor and optimize AI workloads effectively.

Limited Security and Compliance
Features
While API Gateways can enforce authentication and rate limiting, they fall
short in addressing AI-specific security concerns. For example, they
cannot detect or prevent prompt injection attacks, nor can they ensure
compliance with data privacy regulations by redacting sensitive
information from AI-generated responses.

Chapter 4

 How you should
think about build

VS
 buy for AI Gateway

for enterprises

To many teams, the idea of building an in-house AI Gateway feels almost
obvious at first. After all, it s̓ just routing — a lightweight layer that sits
between prompts and models, right? The logic is tempting: write a few
wrappers around APIs, add some logging, and move on.

But that illusion of simplicity begins to fracture almost immediately at
scale.

What Starts Simple Becomes
Operationally Complex

Routing a handful of models is manageable. The engineering effort
required to send a prompt to an LLM and receive a response is minimal.
But over time, as use cases expand and model options multiply, the com-
plexity curve steepens rapidly.

New models are released weekly. Each has its own interface
conventions, parameter tuning, rate limits, and latency profiles. Before
long, teams need more than just routing:

• They require fallbacks across models for reliability.
• They need load balancing, usage tracking, and semantic caching.
• They must enforce governance, enable observability, and manage
multi-region deployments.

These are not peripheral features—they are core requirements for deploy-
ing AI systems into real production environments. Building them in-house
transforms a simple router into a critical, high-maintenance
infrastructure system.

And the cost is not just technical debt—it s̓ operational risk. When internal
gateways fail or lag behind in functionality, they break customer-facing
experiences, slow down product teams, and consume valuable engineer-ing
bandwidth.

The Gateway Has Evolved into a
Central Control Plane

Strategic Focus: Build What Different
iates, Buy What Scales

What was once a mere transport layer is now evolving into the control plane of the AI
stack. A modern AI Gateway is expected to:

Manage model orchestration and provider abstraction.
Register and route to enterprise tools via MCP Servers.
Mediate communication between agents through A2A protocols.
Provide secure authentication, rate limiting, and usage-based access.
Support deployment flexibility across on-prem, cloud, and multi-
region environments

Prebuilt support for the latest models and tools.
Guaranteed uptime, performance, and compliance.
Plug-and-play integration with Kubernetes, on-prem deployments, and cloud-native
varchitectures.
Native support for protocols like MCP and A2A, powering next-gen automation.

In doing so, they free your team to focus on what matters most: building differentiated
AI experiences, not maintaining infrastructure behind the scenes.

The key question for any team should be: Is your AI Gateway part of your product differe
ntiation—or part of your foundation?

If your Gateway is not itself a competitive advantage, then building and maintaining it in-
house only serves to slow you down. The more time you spend building infrastructure,
the less time your team spends delivering value to customers.

In such cases, the logical approach is to adopt an enterprise-grade solution—a platform
thatʼs built to handle the fast-evolving AI ecosystem, provide reliability guarantees, and
integrate seamlessly into your stack.

Solutions like TrueFoundryʼs AI Gateway are already trusted by engineering teams
looking to move faster, not reinvent. These platforms offer:

Chapter 5

Architecture of
AI Gateway

In modern generative AI systems, the AI Gateway functions as the critical proxy
layer between applications and language model (LLM) providers. It plays a central
role in managing reliability, observability, access control, and cost-efficiency for
every request flowing into production.

Because the gateway lies in the critical path of production traffic, it must be
designed with the following core principles in mind:

Key Architectural Priorities
High Availability: The gateway must not become a single point of failure. Even in the
face of dependency issues (like database or queue outages), it should continue
serving traffic gracefully.

Low Latency: Since it sits inline with every inference request, the gateway must add
minimal overhead to ensure a snappy user experience.

High Throughput and Scalability: The system should scale linearly with load and be able
to handle thousands of concurrent requests with efficient resource usage.

No External Dependencies in the Hot Path: Any network-bound or disk-bound
operations should be offloaded to asynchronous systems to prevent performance
bottlenecks.

In-Memory Decision Making: Critical checks like rate limiting, load balancing,
authentication, and authorization should all be performed in-memory for maximum speed
and reliability.

Separation of Control Plane and Proxy Plane: Configuration changes and system
management should be decoupled from live traffic routing, enabling global deployments
with regional fault isolation.

TrueFoundry's Gateway Architecture
Built on Hono Framework: The gateway leverages Hono, a minimalistic, ultra-fast
framework optimized for edge environments. This ensures minimal runtime overhead
and extremely fast request handling.
Zero External Calls on Request Path: Once a request hits the gateway, it does not trigger
any external calls (unless semantic caching is enabled). All operational logic is handled
internally, reducing risk and boosting reliability.
In-Memory Enforcement: All authentication, authorization, rate-limiting, and load-balancing
decisions are made using in-memory configurations, ensuring sub-millisecond response
times.
Asynchronous Logging: Logs and request metrics are pushed to a message queue
asynchronously, ensuring that data observability does not block or slow down the
request path.
Fail-Safe Behavior: Even if the external logging queue is down, the gateway will not fail
any requests. This guarantees uptime and resilience under partial system failures.
Horizontally Scalable: The gateway is CPU-bound and stateless, which makes it easy to
scale out. It performs efficiently under high concurrency and low memory usage.

TrueFoundry's AI Gateway
Architecture
TrueFoundry s̓ AI Gateway embodies all of the above design principles,
purpose-built for low latency, high reliability, and seamless scalability

 You can route and scale safely across providers.
 Apply fine-grained controls at user/team-level.
 Maintain observability and governance across the system.
 Do all of this without impacting latency or reliability.

Control Plane & Data Flow
TrueFoundry separates the control plane (management) from the data plane (real-time
traffic routing) for scalability and flexibility.

Components Overview of the AI Gateway:

UI: Web interface with an LLM playground, monitoring dashboards, and config panels
for models, teams, rate limits, etc.
Postgres DB: Stores persistent configuration data (users, teams, keys, models, virtual
accounts, etc.)
ClickHouse: High-performance columnar database used for storing logs, metrics, and
usage analytics.
NATS Queue: Acts as a real-time sync bus between control plane and distributed
gateway pods. All config/state updates are pushed through NATS and instantly available
in all regions.
Backend Service: Orchestrates config syncing, database updates, and analytics ingestion.
Gateway Pods: Stateless, in-region, lightweight proxies that handle actual LLM traffic.
They consume NATS messages and perform all logic in-memory, with no external
dependencies.

Performance Benchmarks for TrueFoundry's AI Gateway

TrueFoundry's Gateway has been thoroughly benchmarked for performance under
vproduction-like loads:

250 RPS on 1 CPU/1GB RAM with only 3 ms added latency.
Scales efficiently up to 350 RPS per pod before hitting CPU saturation, beyond which you
can add replicas.
Supports tens of thousands of RPS with horizontal scaling across regions.
No additional latency even with multiple rate-limit, auth, and load-balance rules in place.

Why This Matters
If you're running genAI workloads at scale, or planning to integrate multiple LLMs
(OpenAI, Claude, open source, etc.), the gateway becomes the foundation of your stack.

TrueFoundry's design ensures:

Chapter 6

Future of AI Gateway -
Integration with MCP

Server and A2A protocol

What Is an MCP Server?

An MCP Server abstracts enterprise APIs and services into a standard, LLM-
consumable interface. It allows AI agents to discover, authenticate, and invoke
enterprise functionality through consistent, machine-interpretable schemas.

At its core, an MCP Server transforms internal or third-party APIs into structured
service descriptions that can be discovered, authenticated, and invoked by LLMs
and agents.

Each MCP Server presents functionality in a machine-readable, context-aware
schema, enabling AI agents to reason about what the system can do and how to
interact with it.

Agents use MCP Servers to:

 Discover available tools and operations, dynamically.
 Authenticate seamlessly via enterprise identity providers such as Okta or
 Azure AD.
 Invoke those operations through natural language tasks translated into
 structured RPC calls.

For example, a Slack MCP Server abstracts capabilities like listing channels, retrieving
messages, and posting replies—making them fully interpretable and executable by an
LLM agent without explicit hardcoding. Rather than engineering against Slackʼs REST
API directly, agents work through a consistent semantic interface.

Core Capabilities of the MCP-Enabled
Gateway

Registry and Discovery

Out-of-the-Box MCP Server Support

With MCP integration, the AI Gateway becomes far more than a router for LLMs. It
transforms into a federated control plane that unifies access across all AI models,
enterprise tools, and internal systems. Through a single gateway endpoint, users and
agents can orchestrate end-to-end workflows involving:

 • AI models, such as GPT-4, Claude, and fine-tuned domain models.
 • Enterprise tools, including Slack, Jira, Confluence, and others.
 • Internal services, from proprietary APIs to data platforms and observability stacks.

Consider a user command like: “Create Jira tickets from urgent Slack messages in
#support.ˮ With MCP, this task is entirely agent-executable. The agent queries the Slack
MCP to gather relevant messages, summarizes the content, then invokes the Jira MCP to
generate structured tickets—without requiring manual integration, scripting, or user
 intervention.

To support this functionality at scale, the Gateway + MCP architecture incorporates
several key primitives:

MCP introduces a central MCP registry within the gateway. All MCP servers according to
right access control become instantly discoverable based on permissions and organizational
policies. This registry supports:

This dramatically reduces the integration overhead for new systems. If a service is MCP-
compliant, it can be discovered and used within minutes.

To accelerate enterprise onboarding, TrueFoundry and the broader ecosystem offer
prebuilt MCP Servers for popular tools such as:

• Slack
• Confluence
• Sentry
• Datadog

These integrations are code-free—ready to deploy and use in workflows immediately—
enabling organizations to move from prototype to production in record time.

AI Gateway + MCP: Unified Execution
Layer

Bring Your Own MCP Server

Enterprise-Grade Authentication and Authorization

Agentic Task Execution

For internal APIs or proprietary services, organizations can build and deploy their own
MCP Servers using open SDKs. Once registered with the Gateway, these services are
fully integrated into the discovery, routing, and observability stack. Any service that
speaks MCP can be orchestrated by agents as part of their workflows.

MCP is designed with the security and compliance requirements of large organizations
in mind. It integrates seamlessly into existing identity and access control systems:

• Federated Authentication ensures SSO-based login using providers like Okta, Azure
AD, or any standard IdP—eliminating the need for new credentials or siloed auth stacks.

• Role-Based Access Control (RBAC) policies govern which users or agents can access
specific MCP Servers, tool functions, or datasets.

• OAuth 2.0 and Dynamic Discovery allow secure session management with
scalable permission enforcement, all mediated transparently through the Gateway.

Perhaps the most transformative impact of MCP is that it empowers autonomous agents
to execute complex, cross-system workflows using only natural language as input.
This includes:

• Multi-tool task automation: Orchestrating actions across Slack, Jira, Datadog, etc.
• Dynamic code generation: Where agents synthesize and run executable code against
• MCP tools—transforming how operators, analysts, and developers interact with their
• environments.

Through MCP, the Gateway becomes an intelligent execution substrate—bridging LLMs
and operational systems at runtime.

Built-In Observability, Auditing, and Governance

The Rise of Multi-Agent Systems

What Is the A2A Protocol?

For internal APIs or proprietary services, organizations can build and deploy their own
MCP Servers using open SDKs. Once registered with the Gateway, these services are
fully integrated into the discovery, routing, and observability stack. Any service that
speaks MCP can be orchestrated by agents as part of their workflows.

To operate securely at scale, enterprises must track every interaction across their AI stack.
The Gateway + MCP infrastructure includes first-class observability features:

• End-to-end tracing for user, agent, and tool interactions across all systems
• Structured metadata tagging, enabling analysis by team, environment, tool, or purpose
• Usage and cost analytics to support budgeting, chargebacks, and policy enforcement
• This telemetry supports full regulatory compliance, operational debugging, and strategic

optimization.

Modern enterprises no longer build monolithic AI applications. Instead, they are
decomposing logic across multiple intelligent agents, each optimized for a domain-
specific capability. For example:

• A Planner Agent decomposes a user task into subtasks.
• A Retriever Agent gathers relevant documents or data.
• An Executor Agent performs API calls or tool interactions via MCP.
• A Summarizer Agent compiles output into human-readable results.

These agents must collaborate dynamically, passing context, invoking each otherʼs
capabilities, and aligning around shared goals. Without a common protocol, such
coordination becomes brittle and ad hoc.

These agents must collaborate dynamically, passing context, invoking each otherʼs
capabilities, and aligning around shared goals. Without a common protocol, such
coordination becomes brittle and ad hoc.

• Discover each otherʼs capabilities, interfaces, and trust levels.
• Exchange messages and payloads with contextual state.
• Invoke functions exposed by other agents.
• Negotiate task delegation and execution pathways.
• Log interactions for traceability, observability, and compliance.

This protocol ensures that agents are not just coexisting, but collaborating in a governed
and enterprise-safe manner.

Role of the AI Gateway in A2A Communication

Governance and Observability for A2A

Core Functions of the Gateway in A2A:

The AI Gateway plays a central role in A2A communication by acting as a semantic
message bus and security policy layer between agents. It enforces communication
standards, authenticates messages, tracks conversation context, and logs all
interactions for downstream analytics and compliance.

A2A workflows introduce new operational risks. Rogue agents, infinite loops, or
permission overreach could severely impact system integrity. The AI Gateway
mitigates these risks by embedding fine-grained control and visibility:

In essence, the AI Gateway serves as the control plane and router for all intelligent
agent traffic in the enterprise.

• Secure Message Passing: Encrypt, sign, and route messages across agent boundaries
• Context Propagation: Maintain shared conversation state, execution history,

and agent memory.
• Access and Capability Control: Allow or restrict inter-agent calls based on role,

environment, or trust level.
• Full Traceability: Log every A2A interaction as a first-class telemetry event.

• RBAC for Agent Roles: Limit which agents can call others or invoke specific MCP
actions.
• Telemetry Hooks: Log inter-agent events, including message content (redacted),
timestamps, outcomes, and cost.
• Policy Enforcement: Use dynamic policies to control message types, data
propagation, and execution conditions.
• Replay and Debugging: Reconstruct agent interactions for compliance audits or
fault diagnosis.

Chapter 7

Making AI Gateways
Enterprise-Ready - From
Self-Hosted Models to

and Multi-Region
Gateways

Self-Hosting LLMs, SLMs, and Fine-Tuned Models
on Kubernetes

As organizations transition from experimentation to production-scale AI systems,
deployment flexibility and operational resilience become critical. Whether deploying
across global data centers, meeting strict compliance needs, or managing diverse model
types, enterprises require an AI Gateway thatʼs not just cloud-compatible—but cloud-
agnostic, region-aware, and Kubernetes-native.tt

Enterprises increasingly seek control over model hosting—either to meet regulatory
constraints, reduce latency, or fine-tune models with proprietary data. The AI Gateway
must support direct integration with self-hosted models running on Kubernetes clusters
or secure infrastructure environments.

Key capabilities include:

• Native Support for Self hosting LLMs: Seamlessly connect self-hosted LLMs (e.g., LLaMA,
Mistral, Falcon) as model backends within the Gateway.

• Fine-Tuned Model Routing: Register organization-specific fine-tunes as first-class citizens
in the Gateway and route traffic seamlessly.

• Multi-Model Server Support: Out-of-the-box compatibility with popular open-source model
servers like vLLM, SGLang, Triton Inference Server, Text-Generation-Inference, and Ray
Serve allows teams to host both base and fine-tuned models with minimal custom integration.

• Containerized Deployment: Run any model—LLMs, SLMs, or task-specific fine-tunes—in a
containerized environment using Helm charts, Docker containers.

• GPU Scheduling & Auto-Scaling: Provision and manage GPU resources using Kubernetes-
native autoscaling strategies and schedulers. Scale replicas up or down based on load,
latency, or budget constraints—optimizing both performance and cost.

• Gateway Integration: Once deployed, these models are registered with the AI Gateway as
accessible endpoints—complete with observability, rate limits, caching, and guardrail
enforcement. This ensures production-grade routing, monitoring, and policy control even
for internal workloads.

This allows AI platforms to operate with full flexibility—mixing public APIs and internal
model endpoints under a single unified control plane.

Multi-Region Availability and Global Failover

Hybrid and On-Prem Deployments for Gateway
Not every workload can be served from the cloud. Enterprises operating under strict
compliance (e.g., financial institutions, defense, healthcare) often require on-premise or
hybrid setups where sensitive data and compute must remain inside organizational
firewalls.

The AI Gateway supports:

Modern enterprises are distributed across continents. Serving users globally demands
low-latency model access, regional compliance, and resilient failover.

To support this, the Gateway enables:

This architecture supports global scalability with local guarantees—an essential foundation
for AI-native platforms operating across borders.

This hybrid flexibility ensures compliance without sacrificing innovation or speed.

• Secure On-Prem Deployments: Run the Gateway itself inside secure environments—on
bare metal, Kubernetes clusters, or private VPCs—while retaining full orchestration and
governance features.

• Air-Gapped Mode: Operate in offline environments where no external network access is
permitted; all models, logs, and access controls stay local.

• Unified RBAC and Observability: Apply consistent access control and traceability rules,
regardless of whether traffic is handled in the cloud or on-prem.

• Geo-Redundant Gateway Deployments: Run the Gateway in multiple regions—US, EU,
APAC—with region-specific model registries and resource pools.

• Region-Aware Routing: Automatically direct traffic to the lowest-latency or policy-com-
pliant model endpoint based on user location or request origin.

• Failover Strategies: Gracefully degrade to alternate regions or providers in the event of a
local failure, using fallback rules and retries built into the Gateway.

Chapter 8

Security,
Compliance,

and Governance in
AI Gateways

Enterprises rely on centralized identity management to enforce secure
access.

The AI Gateway must integrate natively with enterprise IdPs (Identity
Providers) like Okta, Azure AD, Google Workspace, or any OIDC-
compliant SSO provider.

Federated Authentication and RBAC

Key capabilities:

Prompt and Output Validation (Guardrails)

This chapter outlines the key controls and enforcement mechanisms
required to deploy LLM systems responsibly and securely at scale.

• SSO Integration: Support for SAML, OIDC, or OAuth2-based login flows with session
management.

• Granular Role-Based Access Control (RBAC): Enforce per-user, per-team, or per-agent
access to models and workspaces for model deployment.

Examples of semantic guardrails:

• PII Detection and Redaction: Automatically scrub names, phone numbers, credit card
info, or government IDs before passing prompts to LLMs.

• Profanity and Toxicity Filters: Intercept unsafe or offensive language using NLP
classifiers or regex policies.

• Prompt Injection Protection: Detect injection attacks attempting to override system
instructions or jailbreak policies.

• Output Policy Enforcement: Apply tone guidelines, brand compliance rules, or custom
content classifiers before final response delivery.

AI systems generate content dynamically—which introduces unique risks like prompt
injections, hallucinations, or policy violations. AI Gateways act as the semantic firewall,
enforcing content-level governance.

Secure Key and Credential Management

Best practices supported by the Gateway:

Observability, Auditing, and Traceability

AI systems often need to invoke external APIs or tools (via MCP Servers),
requiring access to sensitive credentials. Gateways must ensure these
secrets are stored, used, and rotated securely.

• Centralized Secret Vaults: Use services like AWS Secrets Manager,
HashiCorp Vault, or built-in encrypted stores to manage keys and tokens.

• Scoped Credentials: Ensure API keys or OAuth tokens are scoped to the
least-privileged task and not shared across workflows.

• Token Rotation: Automate credential expiry and renewal to reduce
long-term exposure.

Security without traceability is incomplete. Every model interaction, tool
invocation, or agent handoff must be observable and auditable.

Observability capabilities include:

• Request Tracing: Track the full lifecycle of every request—prompt, model
selection, fallback path, cost, and output.

• Metadata Logging: Log attributes like user ID, team, tool, region, latency,
and tokens consumed.

• Audit Trails: Immutable logs of all access and usage events, supporting
forensic analysis and compliance audits.

• Cost Attribution: Break down spend by team, user, tool, or model to
support budgeting and internal chargebacks.

• Regional Model Routing: Route prompts only to models hosted in compli-
ant jurisdictions (e.g., EU for GDPR).

• Data Encryption: Encrypt data in transit (TLS 1.2/1.3) and at rest using
enterprise-grade encryption standards.

• Compliance Certifications: Ensure the gateway infrastructure and host-
ing platform meet industry certifications (ISO 27001, SOC2, HIPAA, etc.).

• Data Retention Controls: Configure TTLs (Time-to-Live) for prompts,
responses, logs, or personally identifiable data.

Data Residency and Compliance
Readiness
Enterprise customers across regions must meet jurisdiction-specific
data requirements (e.g., GDPR, HIPAA, SOC2, FedRAMP).

Enterprise-ready features include:

Chapter 9

Inside TrueFoundry’s
AI Gateway - The

Operational
Layer for Agentic AI

As enterprises scale their GenAI workloads across teams, tools, and
models, they need a production-ready gateway that offers not just
abstraction—but operational control, developer ease, and
enterprise-grade security. This chapter provides a walkthrough of the
TrueFoundry AI Gateway platform, covering how it brings model routing,
tool orchestration, observability, and governance into one unified
interface.

Unified Model Management

TrueFoundry s̓ Gateway unifies access to both cloud based and self-host-
ed LLMs via a single, standardized interface. The Models tab displays all
available models—whether served by OpenAI, Groq, Claude, or self-hosted
on Kubernetes using vLLM, SGLang, or Triton.

Each model entry shows token costs, input/output formats, and routing
configurations. Engineers can instantly add or remove models and assign
them to specific accounts or environments. Self-hosted models—including
fine-tuned variants—can be deployed via Helm charts or Docker and
instantly exposed through the Gateway with no SDK changes.

The Gateway supports:

• Multi-provider access (e.g., OpenAI, Azure, Groq)

• Deployment of self hosted models (e.g., LLaMA, Mistral) on Kubernetes

This abstraction drastically simplifies integration complexity and gives
teams flexibility to optimize across dimensions like latency, control, and
token economics.

MCP Server Integration

Beyond model access, the Gateway introduces MCP Servers as the stan-
dardized layer to connect with external tools and APIs. From Slack to Jira,
GitHub to Sentry, MCP Servers act as pluggable, schema-defined interfac-
es that agents or LLMs can invoke directly within prompts.

Each MCP Server is:

• Fully discoverable via the Gateway interface or API
• Governed by access control rules (RBAC, auth tokens)
• Callable from any model or agent execution

You can register internal tools as MCP Servers using a simple API spec,
turning private APIs into agent-compatible functions. In the UI, tools are
grouped, previewable in the playground, and testable instantly—dramati-
cally reducing the need for middleware or hardcoded logic.

The Metrics tab provides deep visibility into model performance across
time, teams, and metadata. It includes request volume, latency trends,
inter-token delay, and token-level cost attribution across teams, models,
and users.

Built-In Observability and
Cost Analytics

You can:

• Track performance metrics like P99 latency or RPS per model
• Analyze cost patterns across environments or regions
• Filter telemetry based on request metadata

This makes TrueFoundry's Gateway not only a routing layer—but also a
governance system that helps platform teams manage budgets, detect
failures, and optimize usage.

Using the Gateway Config tab, admins can define access policies, fallback
rules, and budget limits using YAML-based configuration.

• Rate limiting
• Fallback
• Load balancing
• Budget Limiting

Policy Enforcement & Budget
Governance

For example:

yaml
CopyEdit
- id: daily-cost-limit
unit: cost_per_day
models:
- openai-main/gpt-3.5-turbo

 limit_to: 500.0

You can also define token quotas per team, limit access to specific
models, or configure fallback routing (e.g., use Claude if OpenAI is
overloaded). These controls help organizations ensure predictable
usage and reduce overages—even as LLM usage scales.

Developer Playground for
Prompting & Code Generation

The Playground gives developers a zero-friction environment to
prototype prompts and test agent workflows. You can bind MCP Servers
to prompts, simulate tool execution, and preview agent behavior across
providers.

For every configuration:

• It generates production-ready Python or Curl snippets
• It logs tool interactions and model output side-by-side
• It supports prompt variables, streaming responses, and retry logi

This serves both experimentation and handoff to engineering—making it
faster to go from prompt design to deployable code.

Advanced Deployment Flexibility

TrueFoundry is Kubernetes-native. Teams can self-host models or the
entire Gateway stack within their private infrastructure or on the cloud of
their choice. The platform integrates with:

• Model servers like vLLM, Triton, SGLang, KServe, TorchServe
• GPU orchestration with horizontal scaling, affinity rules
• Observability backends like Prometheus, Datadog, or OpenTelemetry

Containerized model deployment, federation across cloud and on-prem,
and regional failover are all supported—making the Gateway truly pro-
duction-ready for enterprise-grade workloads.

Here s̓ how a LLM request flows through the gateway:

TrueFoundry s̓ Gateway is designed to be extremely lightweight and
performant—even under enterprise-scale workloads. At runtime, every
request is handled in-process with no hot path dependency on external
databases or services. This architectural decision ensures predictable,
ultra-low latency even under high concurrency.

In benchmarks:

This level of performance is critical for use cases such as streaming chat
UIs, real-time agent coordination, or latency-sensitive workflows inte-
grated into operational systems.

• Each Gateway pod adds <3ms overhead to LLM requests at the 99th
percentile
• A single pod can handle 250+ RPS on 1 CPU and 1 GB RAM
• Horizontal scaling across regions allows tens of thousands of RPS,
with full observability and consistency

Sub-3ms Latency and Scalable Ar-

TrueFoundry supports flexible deployment models tailored to enterprise
needs and infrastructure diversity

• SaaS–Hosted Gateway, available globally with full multi-region
support.
• Self-Hosted Gateway on Kubernetes, within VPCs, on-premise
clusters, or air-gapped environments—ideal for compliance-sensitive
industries.
• Edge Placement options to run the Gateway near model inference
endpoints for minimal latency.

Standalone & Cloud-Edge Deploy-
ment Options

Why this matters:

Whether you're operating entirely in public cloud, deploying inside
private data centers, or bridging both via hybrid topology, the Gateway
adapts to your architecture. It ensures consistent enforcement of poli-
cies, unified observability, and low-latency performance across
deployment environments.

Whether you're operating entirely in public cloud, deploying inside
private data centers, or bridging both via hybrid topology, the Gateway
adapts to your architecture. It ensures consistent enforcement of
policies, unified observability, and low-latency performance across
deploy-ment environments.

Conclusion
The rise of agentic systems has reshaped how enterprises approach
automation, knowledge workflows, and human-machine interaction. But
deploying these systems into production environments is far from trivial.
What starts as a model integration challenge quickly spirals into an
orchestration, governance, cost-control, and security problem. In this
landscape, the AI Gateway is not a luxury—it is foundational infrastruc-
ture.

This book has explored how the AI Gateway fills the massive operational
and architectural gaps left by traditional API gateways. It unifies access
to models, enforces semantic guardrails, provides advanced observabili-
ty, routes intelligently based on performance or cost, and abstracts the
ever-evolving LLM ecosystem into a consistent, compliant, and produc-
tion-ready interface. Most critically, it evolves into the control plane for
AI-powered enterprises, integrating not only with models but also with
enterprise tools through MCP Servers and coordinating agent-based
workflows via A2A protocols.

For any company building AI-first products or integrating AI across busi-
ness units, the Gateway becomes the fabric that ensures scalability,
security, and speed. And while some may be tempted to build such a
system in-house, the cost of maintenance, the pace of innovation, and
the infrastructure burden make it a risky long-term strategy.

TrueFoundry s̓ AI Gateway offers a hardened, enterprise-grade
platform designed to meet the demands of modern AI deployments.
With built-in support for multi-provider orchestration, advanced
security controls, observability, semantic caching, and seamless
MCP + A2A integration, it empowers teams to focus on building AI-
native capabilities—without reinventing the plumbing beneath.

