4 A g
\/\/ N ¥ Ul
\ ,

A ““0‘0’0’00.. 0 . .
0000000000
L?MTOOOOAZY’QQO
: ...oAqlnxxv
DRRRRARAN X
- i " ..00000000"0‘
- .O.a.@.@o@w@waw&

OO
o
o%% 6

PACC
Prefect Associate
Certification Course

PREFECT

Slack

W Join Prefect Community Slack

W2 Join the pacc- channel for the course

Norms

Norms

Code of conduct

e \We expect all participants to be kind and respectful
e Reach out to any of the instructors via Slack if you
see or experience an issue

https://docs.prefect.io/latest/contributing/overview/?h=conduct#prefect-code-of-conduct

Norms

Zoom

e (Camera on
e Mute unless asking a question
e Use hand raise to ask a question

Slack

e Use threads
e Emoji responses @

o INntroductions

e

Goals

Goals

1. Competence with Prefect 2 so you can build
workflow applications
2. Connect with each other

3. Have fun! &%

- Overview

10

What is Prefect?

Prefect is an orchestration and
observability platform that empowers
developers to build and scale resilient
code quickly, turning scheduled jobs into
resilient, data applications. ©

Prefect helps you avoid
roadblocks on the route to
production

=N 4 . Y
- & y 5
3 ; 120
LT e " e)
%
FE 4
o
- T
- |:.)\||.4.“"l(x’ 3

Why workflow management?

Answers the questions:

When?
Where?
How?
Who?

14

When?

e Ad hoc (manually)
e On a schedule
e |n response to events

15

Where?

e Locally
e Easily move to cloud providers

gy

16

How?

e Docker, K8s, or a subprocess
e From the Ul, CLI, or code
e Human-in-the-loop approval workflow option

& docker kubernetes

17

Who?

Auth - SSO/SCIM
RBAC
Auditable

Object level access controls

18

Why Prefect for workflow management?

- Pythonic

- Monitoring & observability

- With teams: standardized workflow management is a
must - Prefect provides guardrails

e pgthonw

19

Understand the state of your workflows

®
L
? Q Dashboard All tags ¢ 8h 24h 1w
Prefect Technologies
e v Flow Runs 1,091 total Task Runs Events
39,658 407,844
Dashboard 39,649 Completed 99.98% 5,668 Block
9 Failed 0.02% 454 Worker
Flow Runs | 401,722 Other
Flows — - - -
1 2 1078 0 0
Deployments
Work Pools
Flows with failed or crashed runs Active Work Pools
Blocks
orbit-to-bigquery 1A
2 kubernetes-legacy-data-
Variables 3h 50m ago L RGIE]
el T
Automations orbit-to-bigquery > private-numbat | auto-scheduled
) Failed 2023/09/01 11:45:07 AM_(1m 54s O e Polled Work Queues Late runs Completes
Event Feed 0 2025/08/011:45: " askruns 33s ago ° 0 (0savg) 98.67% + 0.9
Deployment () Orbit to BigQuery
TR Dhocks Work Pool £ kubernetes-prd-data-warehouse Work Queue & default
Artifacts kubernetes-prd-data-warehouse |||||||||||||| 852 total
Settings > ;:r;;census'sync 1 Polled Work Queues Late runs Completes
g 18s ago XYY 0(Msavg) 99.65% + 19
main-orchestrator 1v
3h 59m ago
kubernetes-stg-data-warehouse |||||||"||||| 76 total
® Help N delete-cloudi-tenant 2 v
19h 23m ago Polled Work Queues Late runs Completes
Bill Palombi 18s ago (XYY YY) 0 (0savg) 93.42%
cloud2-to-data-warehouse 6 v

' bill@prefect.io

Orchestrate and observe

Flow Runs / wild-bug
(@ Completed) (=) 2023/09/0108:53:29 AM (D 23s O 16 task runs

Flow &3 walk-route Deployment © walk-route

08:53:30 AM 08:53:35 AM 08:53:40 AM

detverpackage-2
- get_package_count-2
. get_house_count-0 - l visit_house-2
l visit_house-0 ' get_package_count-1
' get_package_count-0 —
dotverpackage-0

v Events

08:53:45 AM

' get_package_count-3

Retry

)
~/

08:53:50 AM

' get_package_count-4

' visit_house-4

¢:

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

set up logging?

do it every hour?

visualize the dependencies?

automatically retry if it fails?

create an artifact for human viewing?

add caching?

add collaborators to run and view - who don’t code?
send me a message when it succeeds?

run it in a Docker container-based environment?
10. pause for input?

11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?

©CoOoNOORWN =

22

Business outcomes

- Save time @
- Save money @
- Increase productivity ##

-
O
w
w
w
o
o

24

101 Agenda

- Setup: version, login, set

- From Python function to Prefect flow
- Ceate a deployment with .serve()

- Run a deployment

- Deployment schedules

- Resources

l

prefect version

26

Prefect information in the CLI

prefect version

Version:
API version:

Python version:

Git commit:
Built:
0S/Arch:
Profile:
Server type:

- 2.18.1

0.8.4

321202

8cff545a

Thu, Apr 25, 2024 3:40 PM
darwin/armé4

sandbox-jeff

c loud

27

Run prefect version now

If you see version lower than 2.18.1

pip install -U prefect

(You can do this and any of the other items you'll see
on upcoming slides during the first lab)

Prefect has two options for server interaction

1. Self-host a Prefect server

a.
o}

You spin up a local server
Backed by SQLite db (or PostgreSQL)

2. Use the Prefect Cloud platform

a.
o}
C:

28

Free tier

Organization management capabilities on other tiers
Additional features such as automations, push work
pools, managed work pools, metrics, incidents

No database management required

To the Cloud

30

Prefect Cloud

Go to app.prefect.cloud in browser

- Sign up or sign in
- Use a free personal account if you don’t want to
use an organization account

http://app.prefect.cloud
http://app.prefect.cloud

l

e Prefect profiles

a2

Prefect profiles

- Persistent settings for interacting with Prefect
- One profile active at all times
- Common to switch between:

- Cloud and a self-hosted Prefect server

- Cloud workspaces

- Saved settings such as logging level

33

Prefect profiles

List: prefect profile Is

Available Profiles:

* default
local
jeffmshale
gh2
prefect-more

34

Prefect profiles

- Profiles live in ~/.prefect/profiles.toml| B
- Your profile stays active until you switch to another

profile @
- Save connection info to Prefect Cloud in a profile

35

Prefect Cloud

Authenticate your CLI via browser or API key:

prefect cloud login

? How would you like to authenticate? [Use arrows to move; enter to select]
> Log in with a web browser
Paste an API key

Select Log in with a web browser

Creates and saves an API key for you M

36

Prefect Cloud

Or, if Ul doesn’t work: create and paste an API key

Manually create an API key from Prefect Cloud in
the Ul

37

Prefect Cloud - API key

(? Help >

Jeff Hale S
@ jeff@prefect.io

https://app.prefect.cloud/my/api-keys

Profile

API| Keys

Billing
Preferences
Feature previews

Sign out

@ ¢

Prefect Cloud - API key

APl Keys +

Name

demos

cli-efaf65f4-2e55-4bd0-9b53-e46519d5d6a9

cli-275b52!

cli-f26409:

cli-dd6a55

38

Create API Key

Name

Expiration Date

Oct 5th, 2023

Never Expire

Created

Jun 10th, 2023

Jul 7th, 2023

Cancel Create

Expiration

2023/09/20 12:00:00 AM

2023/09/30 12:00:00 AM

39

Flows

40

Course project

Fetch and use weather forecast data from
Open-Meteo & }

open-meteo.com

https://open-meteo.com/en

Starting point: basic Python function

import httpx

def fetch_weather(lat: float = 38.9, lon: float = -77.0):
base_url = "https://api.open-meteo.com/vl/forecast/"
temps = httpx.get(
base_url,
params=dict(latitude=lat, longitude=lon, hourly="temperature_2m"),

)

forecasted_temp = float(temps.json() ["hourly"] ["temperature_2m"] [0])
print(f"Forecasted temp C: {forecasted_temp} degrees")

return forecasted_temp

if _name__ == "__main__":
fetch_weather()

41

42

Flows

- Add a Prefect @flow decorator
- Most basic Prefect object
- All you need to start

Make it a flow

import httpx
from prefect import flow

@flow()
def fetch_weather(lat: float = 38.9, lon: float = -77.0):
base_url = "https://api.open-meteo.com/vl/forecast/"
temps = httpx.get(
base_url,
params=dict(latitude=1lat, longitude=lon, hourly="temperature_2m"),

)
forecasted_temp = float(temps.json() ["hourly"] ["temperature_2m"] [0])

print(f"Forecasted temp C: {forecasted_temp} degrees")
return forecasted_temp

if _name__ == "__main__":
fetch_weather()

43

Run the code: python my file.py

14:12:25.969 | INFO | prefect.engine - Created flow run 'mustard-coucal' for flow 'fetch-weather'’
14:12:25.972 | INFO | Flow run 'mustard-coucal' - View at https://app.prefect.cloud/account/9b649228-041
9-40e1-9e0d-44954b5c@ab6/workspace/d137367a-5055-44ff-b91c-617366c9ed4c4/flow-runs/flow-run/60b02758-beeb-4a
17-bb67-02f0d259811c

Forecasted temp C: 5.1 degrees

14:12:27.962 | INFO | Flow run 'mustard-coucal' - Finished in state Completed()

44

Check it out your flow run from the Flow Runs tab in the Ul

ave

Flow Runs / mustard-coucal
[) Completed ’ (= 2024/02/06 02:12:26 PM (D 2s () None

Flow @2 fetch-weather

v Events 42
Logs Task Runs Subflow Runs Results Artifacts Details Parameters
Level: all ¢ Oldest to newest ¢
Feb 6th, 2024
02:12:27 PM

INFO Finished in state Completed()
prefect.flow_runs

45

Flows give you

- Auto logging

- State tracking info sent to API

- Input arguments type checked/coerced
- Timeouts can be enforced

- Lots of other benefits you'll see soon #

46

o Deployments

48

Deployments

Turn your workflow into an interactive application! g

Deployments

Server-side representation of a flow
Contains meta-data for remote orchestration
Can be run on various infrastructure

Can be kicked off

- manually (from the Ul or CLI)
- on a schedule
- automatically, in response to an event trigger

49

50

.Serve() method

Create a deployment by calling the flow function’s
.serve() method.

if __name__ == "__main__":
fetch_weather.serve(name="deploy-1")

51

.Serve() method

Run the script - creates a deployment and starts a
server

Your flow 'fetch-weather' is being served and polling for scheduled runs!
To trigger a run for this flow, use the following command:

$ prefect deployment run 'fetch-weather/deploy-1'
You can also run your flow via the Prefect UI:

https://app.prefect.cloud/account/55c7£f5e5-2da9-426c-8123-2948d5e5d94b/workspace/7adlef2f-2£f9c-49b5-b
29f-4e0b3760d4c6/deployments/deployment/73c53509-8e7£-4924-a208-9d9bf2a50558

52

You just made a deployment!

53

Deployment

- Wraps your flow: turns it into a workflow
application
- Contains all the needed metadata to run your flow

In production

- Your flow’s passport to orchestration land!
PASSPORT

54

Check out the deployment in the Ul

Deployment page

Deployments / deploy-1

Flow @2 fetch-weather

SUCCESS RATE
[+)
(0)4
1%

0.6%

0.2%
We Th F Sa Su Mo Tu
Runs Upcoming Parameters
0 Flow runs

©)

Configuration

AVERAGE LATENESS O

Os

1s
0.6s

0.2s

Description

Q. Search by run name

No runs from the last 180 days

All except scheduled ¢

AVERAGE DURATION

Os

1s
0.6s

0.2s

Newest to oldest

®

- Run >

Schedule

/ Add

Triggers
-+ Add

Status

© Ready

Created

2024/02/06 02:17:11 PM
Created By
jeffprefectio

Last Updated
2024/02/06 02:17:10 PM

l

¢ RUN a deployment

56

Run manually from Ul: Run -> Quick run

Deployments / deploy-1

Flow @2 fetch-weather

- Run >

Quick run
SUCCESS RATE @ AVERAGE LATENESS O AVERAGE DURATIO
0, Custom run
(0)/4 Os Os
1% 1s 1s
0.6% 0.6s 0.6s
0.2% 0.2s 0.2s
We Th Fr Sa Su Mo Tu We T™h Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu
Details Runs Upcoming Parameters Configuration Description
0 Flow runs Q, Search by run name All except scheduled ¢ Newest to oldest

~
v

o7

Adjust the entrypoint flow params with a Custom run

Run Name

Q

nu634-sadalsuud-f

Parameters

lat (Optional)

38.9

lon (Optional)

=77

v Validate parameters before submitting

Start

Now Later

Additional Options v

Cancel Submit

View the flow run logs in the Ul (or CLI)

Flow Runs / complex-pogona
K {5 2024/02/06 02:23:05PM (D 2s () None Retry
Flow @2 fetch-weather Deployment () deploy-1

v Events ‘°‘:

Logs Task Runs Subflow Runs Results Artifacts Details Parameters

Level: all ¢ Oldest to newest ¢

Feb 6th, 2024

INFO Runner 'deploy-1' submitting flow run '8bcc94bb-1ebe-4bac-8528-d888dbff27d4" 02:23:03 PM
prefect.flow_runs.runner
INFO Opening process.. . 92:23:03 PM
prefect.flow_runs.runner
INFO Completed submission of flow run '8bcc94bb-1ebe-4bac-8528-d088dbff27d4" 92:23:03 PM

prefect.flow_runs.runner

59

Run deployment manually from CLI

prefect deployment run
my_entrypoint_flow:my_deployment

60

.serve()

Shut down the server with control + ¢

e Scheduling

62

Create a deployment schedule

1. When creating a deployment
2. After deployment creation in the Ul or CLI

Create, pause, and delete schedules from the QI

Deployments / deploy-1
Y / deploy ® RunD
Flow @3 fetch-weather
Schedules
SUCCESS RATE ® AVERAGE LATENESS ® AVERAGE DURATION ®
0, Hourly - g
(0)73 2m 43s Os
1% 1s + Schedule
150s ~ T T T T TTTTTTTTTTTTTTT T T T
0.6% 0.6s Lt
+ Add
0.2% 50s 0.2s
Su Mo Tu We Th Fr Sa Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Status

63

64

Click + Schedule on the Deployment page in the Ul

& Run >

Schedules

Every minute every
day -

-+ Schedule

65

Add a schedule when creating a deployment with .serve()

import httpx
from prefect import flow

@flow()
def fetch_weather(lat: float = 38.9, lon: float = -77.0):
base_url = "https://api.open—-meteo.com/vl1l/forecast/"
temps = httpx.get(
base_url,
params=dict(latitude=1lat, longitude=lon, hourly="temperature_2m"),

)

forecasted_temp = float(temps.json() ["hourly"] ["temperature_2m"][0])
print(f"Forecasted temp C: {forecasted_temp} degrees")

return forecasted_temp

if _name__ == "__main__":
fetch_weather.serve(name="deploy-scheduled", cron="x x % % x")

66

Schedule types

- Interval
- Cron
- RRule

67

Choose Interval or Cron if in the Ul

Add schedule

Schedule type

Interval Cron RRule

Value

60

Anchor date

Apr 29th, 2024 at 3:17 PM

Timezone

uTC

Interval

Cancel

Minutes ¢

<>

Save

RRUIE

RRule cheat sheet: https://jkbrzt.github.io/rrule/

Or ask Marvin (another Prefect package) pip install marvin

from marvin import ai_fn

@ai_fn
def rrule(text: str) -> str:

Generate valid RRULE strings from a natural language description of an event

yield pendulum.now.isoformat()

rrule('every hour from 9-6 on thursdays')
"RRULE:FREQ=WEEKLY;BYDAY=TH;BYHOUR=9,10,11,12,13,14,15,16,;BYMINUTE=0;BYSECOND=0"

https://jkbrzt.github.io/rrule/
https://www.askmarvin.ai/

Pausing and resuming deployment schedules

ﬂA'TMA‘WﬂI_ :

Pause/resume a deployment’s schedules from Ul

Deployment name

get-temp @
Created 2023/11/28 10:50:49 AM

gh-issue-deploy @
Created 2023/11/30 01:41:32 PM

guessing-classifier »
Created 2024/01/18 09:40:29
AM

my-code-not-into-an-
image-deployment
Created 2023/11/13 03:22:05 PM

Flow name

fetch-
weather

print-issue

classify-
image

buy

Schedule

Every minute every
day

Every hour, only on
Wednesday

At 05:00 AM every
day, only in February

Tags

Activity

..............

................

EsEsamsssesne

70

Note i}

Shutting down your server with .serve() pauses a
deployment’s schedules

71

Pause/resume individual schedules from Ul

o Run >

Schedules

Every minute every
day -

Hourly .

<+ Schedule

72

Parameters

74

Parameters - argument values for entrypoint flow function

If your flow function has params and no defaults, you
must feed it (give it values).

GIFSec.com

75

Parameters options

1. Make default arguments in flow function definition
2. Can override at deployment creation
3. Can override both of the above at runtime

76

Parameters in the Ul at runtime

Collaborators can run with custom values in a

Custom run in the Ul

Parameters

lat (Optional)

38.9

lon (Optional)

=77

v| Validate parameters before submitting

Use JSON input

Select variable

Omit value

Parameters at deployment creation time

Can specify in .serve()

if __name__ == "__main__":
fetch_weather.serve(name="deploy-params", parameters={"lat": 11, "lon": 12})

77

Parameters from the CLI at runtime

prefect deployment run parametrized/dev --param user=Marvin
--param answer=42

OR

prefect deployment run parametrized/dev --params '{"user”:
"Marvin”, "answer": 42}’

78

79

Terms recap

Flow = a workflow
Flow run = an individual run of a flow
Deployment = a workflow application

- Can schedule repeated flow runs
- Can run remotely
- Other team members can access

o Resources

81

Docs - docs.prefect.io

Use the docs

T

e SRS
ol
A

Docs - docs.prefect.io

J 2181 «

Prefect Docs

Getting Started
Installation
Quickstart

Tutorial

How-to Guides

Concepts

Cloud

Integrations

API Reference

Community

" GitHub
¢ [@seah SE o vre (EARERECRGIOURSY

Welcome to Prefect ’

Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines.

It's the easiest way to transform any Python function into a unit of work that can be observed and orchestrated. Just bring
your Python code, sprinkle in a few decorators, and go!

With Prefect you gain:

» scheduling e caching
e retries » notifications
¢ logging « observability
* convenient async functionality e event-based orchestration
? Q Dashboard All tags ¢ 8 24h 1w
::'x:::::i”m v Flow Runs 1,091 total Task Runs Events
39,658 407,844
F— 39,649 Completed 99.98% 5,668 Block
9 Failed 0.02% 454 Worker
Flow Runs] 401,722 Other
Flows - - - -—
n 2 1078 0 0
Deployments

83

Prefect Community Slack

Lots of helpful Q & A from the community and Prefect
staff

84

#ask-marvin: Community Slack channel

@Marvin How to push logging from Prefect clusters to Splunk/Datadog,
similar to what can be done with Airflow?

Marvin APP 1 day ago
Ah, the joys of logging. It's like watching paint dry, but without the satisfying
end result.

Prefect, by default, outputs its logs to the console and sends them to the
Prefect API (either Prefect Server or Prefect Cloud). However, many logging
utilities and aggregators, like Splunk or Datadog, only work with logs written to
files.

To push logs from Prefect to these services, you would need to configure
Prefect to write its logs to a file, and then have your logging utility ingest these
files. Here are the steps you'd need to follow:

1. Configure Prefect logging to output to a file. This can be done by creating a
custom logging configuration. You can find more details on how to do this in
the Prefect documentation.

2. Set up your logging utility (Splunk/Datadog) to ingest these log files. The

Prefect codebase

qithub.com/PrefectHQ/prefect

(2) prefect

85

Dig into the code
Create an issue
Make a PR

Give ita W

[<7 Edit Pins 'J [® Unwatch (155 ~] [% Fork 1.4k

- J [W Starred 13.1k

https://github.com/PrefectHQ/prefect

86

101 Recap

You've seen how to get started with Prefect!

- prefect version

- Prefect Profiles

- From Python function to Prefect flow

- Create a deployment with flow.serve()

- Run a deployment from the Ul

- Create and pause schedules

- Resources: docs, Slack, Prefect GitHub repo

Lab 101

88

Lab norms for breakout rooms

1.
2.

=

=Ry O oS

@ Introduce yourselves

Camera on (if possible)
k= One person shares screen (if you need to leave and
come back to Zoom to enable screen sharing, do that now)
#& Everyone codes
[®@ Each person talks
B Share code in Slack thread - learn from other groups
& Low-pressure, welcoming environment: lean in

101 Lab - | see course GitHub repo for example
code)
Use Open-Meteo API -

- Authenticate your CLI to Prefect Cloud

- Fine to use a personal account or a workspace

- Take a function that fetches data and make it a flow

- Use .serve() method to deploy your flow

- Run your flow from the Ul

- Create a schedule for your deployment

- Shut down your server

- Run a deployment from the CLI, override the params

- APl docs: open-meteo.com/en/docs

- Example: wind speed for the last hour:

weather.json()["hourly"]["windspeed 10m"][0]

https://open-meteo.com/en/docs

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

90

© 0N O AW

set up logging?

do it every hour?

visualize the dependencies?

automatically retry if it fails?

create an artifact for human viewing?

add caching?

add collaborators to run and view - who don’t code?
send me a message when it succeeds?

run it in a Docker container-based environment?
pause for input?

automatically declare an incident when a % of workflows fail?
automatically run it a workflow response to an event?

102 - Intro to orchjh

PREFECT

92

102 Agenda

- Tasks

- Logging
- Retries

- Results

- Artifacts
- Caching

e Jasks

94

Tasks

Add the @task decorator to a function

- Enable task retries
- Enable caching
- Enable easy async

95

Starting Point: example pipeline functions

1. Fetch weather data and return it ¥
2. Save data to csv and return success message @
3. Pipelinetocall 1and 2 %,

Fetch data function

import httpx

def fetch_weather(lat: float, lon: float):
base_url = "https://api.open-meteo.com/v1l/forecast/"
temps = httpx.get(
base_url,
params=dict(latitude=lat, longitude=lon, hourly="temperature_2m"),

)

forecasted_temp = float(temps.json() ["hourly"] ["temperature_2m"] [0])
print(f"Forecasted temp C: {forecasted_temp} degrees")
return forecasted_temp

96

Save data function

def save_weather(temp: float):
with open("weather.csv", "w+") as w:
w.write(str(temp))
return "Successfully wrote temp"

97

Pipeline (assembly) function

def pipeline(lat: float = 38.9, lon: float = -77.0):
temp = fetch_weather(lat, lon)
result = save_weather(temp)
return result

if __name__ == "_ _main__":
pipeline()

98

99

Tasks

@

Turn the first two functions into tasks with the @task
decorator

Turn into a task

import httpx
from prefect import flow, task

@task
def fetch_weather(lat: float, lon: float):
base_url = "https://api.open-meteo.com/vl/forecast/"

temps = httpx.get(

base_url,
params=dict(latitude=1lat, longitude=lon, hourly="temperature_2m"),

)
forecasted_temp = float(temps.json() ["hourly"] ["temperature_2m"] [0])

print(f"Forecasted temp C: {forecasted_temp} degrees")
return forecasted_temp

100

Turn into a task

@task
def save_weather(temp: float):
with open("weather.csv", "w+") as w:
w.write(str(temp))
return "Successfully wrote temp"

101

Pipeline flow function

@flow

def pipeline(lat: float = 38.9, lon: float = -77.0):
temp = fetch_weather(lat, lon)
result = save_weather(temp)
return result

102

Logs from flow run

11:33:37.091 | INFO
11:33:37.092 | INFO

11:33:37.697 | INFO
k 'fetch_weather'

11:33:37.698 | INFO
11:33:38.250 | INFO
11:33:38.374 | INFO

'save_weather'

11:33:38.375 | INFO
11:33:38.771 | INFO
11:33:38.894 | INFO

| prefect.engine - Created flow run 'sepia-corgi' for flow 'pipeline’
| Flow run 'sepia-corgi' - View at https://app.prefect.cloud/account/
55c7f5e5-2da9-426c-8123-2948d5e5d94b/workspace/7adlef2f-2f9¢c-49b5-b29f-4e0b3760d4c6/flow-run
s/flow-run/0b8f74a6-e062-4af9-aa3c-a0a8d0271ef0

| Flow run 'sepia-corgi' - Created task run 'fetch weather-0' for tas
| Flow run 'sepia-corgi' - Executing 'fetch weather-0' immediately...
| Task run 'fetch weather-0' - Finished in state Completed()

| Flow run 'sepia-corgi' - Created task run 'save weather-0' for task
| Flow run 'sepia-corgi' - Executing 'save weather-0' immediately...

| Task run 'save weather-0' - Finished in state Completed()

| Flow run 'sepia-corgi' - Finished in state Completed()

103

Visualize dependencies in the Ul

L
Flow Runs / laughing-gopher
(D Completed)) () 2024/02/06 02:45:38 PM (D 3s () 2 task runs :
Flow @3 pipeline
1 2:45:36 PM 2:45:37PM 2:45:38 PM 2:45:39PM 2:45:40PM 2:45:41PM 224542 PM 2:45:43PM 24544 PM 2:45:45 PM

ch_weather-0

. save_weather-0

v Events 5

Logs Task Runs Subflow Runs Results Artifacts Details Parameters

2 Task runs Q. Search by run name All states z Newest to Oldest ¢

save_weather-0

([©'Completed)) (© 1s (] 2024/02/06 02:45:40 PM

fetch_weather-0

(D Completed) (1s () 2024/02/06 02:45:39 PM 1 04

Tasks dos and don’ts

- & Don't pass huge amounts of info between tasks
- W Do keep tasks small

Note: Prefect is super Pythonic - conditionals are o8

105

106

Log print statements with log prints

@flow(log prints=True)

107

Log print statements with log prints

@flow(log prints=True)

Want to log print statements by default?
Set environment variable

export PREFECT LOGGING LOG PRINTS = True

(or set in your Prefect Profile)

108

Change logging level

Prefect default logging level: INFO
Change to DEBUG

Set environment variable:

export PREFECT LOGGING LEVEL="DEBUG"

109

Logging

Create custom logs with get run _logger

from prefect import flow, get_run_logger

@flow(name=""1og-examp le—flow")
def log_it():
logger = get_run_logger()
logger.info("INFO level log message.")
logger.debug("You only see this message if the logging level is set to DEBUG. @®")

if __name__ == "__main__":
log_it()

110

Logging

Output with INFO logging level set:

14:24:55.950 | INFO | prefect.engine - Created flow run 'macho-sturgeon' for flow 'log-exa
mple-flow'

14:24:56.022 | INFO | Flow run 'macho-sturgeon' - INFO level log message.

14:24:56.041 | INFO | Flow run 'macho-sturgeon' - Finished in state Completed()

111 ;P

Logging

Output with DEBUG logging level set:

14:27:11.137 | DEBUG | prefect.profiles - Using profile 'local'’

14:27:11.674 | DEBUG | prefect.client - Using ephemeral application with database at sqlite
+aiosqlite:////Users/jeffhale/.prefect/prefect.db

14:27:11.727 | INFO | prefect.engine - Created flow run 'heavy-nightingale' for flow 'log-
example-flow'

14:27:11.727 | DEBUG | Flow run 'heavy-nightingale' - Starting 'ConcurrentTaskRunner'; subm
itted tasks will be run concurrently...

14:27:11.728 | DEBUG | prefect.task_runner.concurrent - Starting task runner...
14:27:11.729 | DEBUG | prefect.client - Using ephemeral application with database at sqlite

+aiosqglite:////Users/jeffhale/.prefect/prefect.db

14:27:11.799 | DEBUG | Flow run 'heavy-nightingale' - Executing flow 'log-example-flow' for
flow run 'heavy-nightingale'...

14:27:11.799 | DEBUG | Flow run 'heavy-nightingale' - Beginning execution...

14:27:11.799 | INFO | Flow run 'heavy-nightingale' - INFO level log message.

14:27:11.800 | DEBUG | Flow run 'heavy-nightingale' - You only see this message if the logg
ing level is set to DEBUG. @

14:27:11.818 | DEBUG | prefect.task_runner.concurrent - Shutting down task runner...

14:27:11.818 | INFO | Flow run 'heavy-nightingale' - Finished in state Completed()
112

)
L
o
e
O
e

113

Retries

Specify in task or a flow decorator
@task(retries=2)
@flow(retries=3)

114

Flow retries

import httpx
from prefect import flow

@flow(retries=4)
def fetch_random_code():
random_code = httpx.get("https://httpstat.us/Random/200,500", verify=False)
if random_code.status_code >= 400:
raise Exception()
print(random_code.text)

if _name__ == "__main__":
fetch_random_code()

115

Automatic retry

File "/Users/jeffhale/Desktop/prefect/pacc-2024-gh/102/retry-flow.py", line 9, in fetch_random/code
raise Exception()

Exception

15:00:58.298 | INFO | Flow run 'inquisitive-walrus' - Received non-final state 'AwaitingRetry' when
proposing final state 'Failed' and will attempt to run again...

200 0K

15:01:00.162 | INFO | Flow run 'inquisitive-walrus' - Finished in state Completed()

116

Automatic retry with delay

117

Automatic retry with delay

Specify in task or flow decorator

@task(retries=2, retry delay seconds=0.1)

118

Task retries with delay

@task(retries=4, retry_delay_seconds=0.1)
def fetch_random_code():
random_code = httpx.get("https://httpstat.us/Random/200,500", verify=False)
if random_code.status_code >= 400:
raise Exception()
print(random_code.text)

¥ You can pass a list of values or an exponential _backoff
to retry delay seconds.

119

States

121

Prefect flow run states

What's the state of your workflows?

122

Prefect flow run states

Name

Scheduled

Late

AwaitingRetry

Pending

Running

Retrying

Type

SCHEDULED

SCHEDULED

SCHEDULED

PENDING

RUNNING

RUNNING

Terminal?

No

[\ [o]

No

No

No

No

Description

The run will begin at a
particular time in the future.

The run's scheduled start time
has passed, but it has not
transitioned to PENDING (5
seconds by default).

The run did not complete
successfully because of a code
issue and had remaining retry
attempts.

The run has been submitted to
run, but is waiting on necessary
preconditions to be satisfied.

The run code is currently
executing.

The run code is currently
executing after previously not
complete successfully.

123

Prefect flow run states

Paused

Cancelling

Cancelled

Completed

Failed

Crashed

PAUSED

CANCELLING

CANCELLED

COMPLETED

FAILED

CRASHED

No

[\ [o]

Yes

(=

Yes

Yes

The run code has stopped
executing until it recieves
manual approval to proceed.

The infrastructure on which the
code was running is being
cleaned up.

The run did not complete
because a user determined that
it should not.

The run completed
successfully.

The run did not complete
because of a code issue and
had no remaining retry
attempts.

The run did not complete
because of an infrastructure
issue.

Results

Results

The data returned by a flow or a task

@task
def my_task():
return 1

1 is the result

125

Passing results

Pass results from one task to another so Prefect can
discover dependency relationships at runtime

def pipeline(lat: float = 38.9, lon: float = -77.0):
temp = fetch_weather(lat, lon)
result = save_weather(temp)
return result

126

Results

¥ By default, Prefect returns a result that is not
persisted to disk. It is only stored in memory.

127

128

Persist results with persist_result=True

from prefect import flow, task
import pandas as pd

@task(persist_result=True)

def my_task():
df = pd.DataFrame(dict(a=[2, 3], b=[4, 5]))
return df

@flow
def my_flow():
res = my_task()

if __name__ == "__main__":
my_flow()

Results

Info about a result is viewable in the Ul - the result is not
viewable

T Task Subflow ~
Logs Results Artifacts Parameters

Runs Runs
= -
oo

Flow run

RESULT
Apr 13th, 2023 at 12:09 PM Created

Task runs

RESULT

my_task-0

Result of type DataFrame persisted to:
/Users/jeffhale/.prefect/storage/c65d28dcc374424ba7212a39dd19418b

129

Persisted results

- Stored in .PREFECT/storage folder by default
- Pickled by default &
- You can use other serializer or compress

v .PREFECT storage > {} c65d28dcc374424ba7212a39dd19418b > ...

v storage 1 {"serializer": {"type": "pickle", "picklelib": "cloudpickle", "picklelib_version": "2.2.1"},

{} c65d28dcc374424ba7212a39dd19418b p "'data": "gAWVXwIAAAAAAACMEXBhbmRhcy5jb3J1LmZyYW111IwJRGFOYUZYyYW111JOUKYGUfZQojARfbWdy\nlIwec!
3 “prefect_version": "2.10.3"}

£ memo_store.toml 4

= prefect.db 5

£ profiles.toml 6

130 ?

Results - remote storage

Use a block (future topic) to store results in cloud provider
StOrage from prefect import flow, task

import pandas as pd
from prefect_gcp.cloud storage import GCSBucket

install module with: pip install prefect-gcp
register block type
create block

@task(persist_result=True)

def my_task():
df = pd.DataFrame(dict(a=[2, 3], b=[4, 5]))
return df

@flow(result_storage=GCSBucket. load ("my-bucket-block"))
def my_flow():

131 df = my_task()

Caching

Caching

What?
Why?
A\ task only

Requires persisting results (so must be serializable)

133

(KZ

Caching: cache key fn

@task(cache key fn=task input hash)

from prefect import flow, task
from prefect.tasks import task_input_hash

@task(cache_key_fn=task_input_hash)
def hello_task(name_input):
print(f"Hello {name_input}!")

@flow
def hello_flow(name_input):
hello_task(name_input)

Caching

First run

22:32:04.227 | INFO
22:32:04.311 | INFO
22:32:04.311 | INFO
Hello Liz!

22:32:04.353 | INFO
22:32:04.368 | INFO

Second run
22:33:02.606 | INFO |
22:33:02.701 | INFO |
22:33:02.702 | INFO |
22:33:02.720 | INFO |
22:33:02.735 | INFO |

135

prefect.engine - Created flow run 'smoky-hippo' for flow 'hello-flow'
Flow run 'smoky-hippo' - Created task run 'hello_task-0' for task 'hello_task'

Flow run 'smoky-hippo' - Executing 'hello_task-0' immediately...
Task run 'hello_task-0' - Finished in state Completed()
Flow run 'smoky-hippo' - Finished in state Completed('All states completed.')

prefect.engine - Created flow run 'able-scallop' for flow 'hello-flow'

Flow run 'able-scallop' - Created task run 'hello_task-0' for task 'hello_task'
Flow run 'able-scallop' - Executing 'hello_task-0' immediately...

Task run 'hello_task-0' - Finished in state Cached(type=COMPLETED)

Flow run 'aEle-scallop' - Finished in state Completed('All states completed.')

J

Caching: cache expiration X

from prefect import flow, task
from prefect.tasks import task_input_hash
from datetime import timedelta

@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(minutes=1))
def hello_task(name_input):
print(f"Hello {name_input}!")

@flow

def hello_flow(name_input):
hello_task(name_input)
136

e Artifacts

Artifacts

Persisted outputs such as Markdown, tables, or links.

138

Artifacts

- Meant for human consumption
- Examples:

- Model scores

- Data quality checks

- Reports
- Gets stored in the db

139

140

Artifacts - Markdown example

import httpx
from prefect import flow, task
from prefect.artifacts import create_markdown_artifact

@task
def mark_it_down(temp):

markdown_report = f"""# Weather Report

Recent weather

| Time | Revenue |

| I]

| Now | {temp} |

| In 1 hour | {temp + 2} |

create_markdown_artifact(
key="weather-report",
markdown=markdown_report,
description="Very scientific weather report",

141

Artifacts - Markdown Example

Access from Artifacts page

(or Flow Runs if part of a flow run)

Very scientific weather report

Artifact

Weather Report

Recent weather

Time Revenue

Now 26.0

In 1 hour 28.0

More helpful

resources
®

Prefect CLI

-@

Start commands with prefect --help is always available

143

prefect --help

— Commands
agent
artifact
block
cloud
concurrency-limit
config
deploy
deployment
dev
flow
flow-run
kubernetes
profile
project
server
variable
version
work-pool
work-queue
worker

Commands for starting and interacting with agent processes.
Commands for starting and interacting with artifacts.
Commands for working with blocks.

Commands for interacting with Prefect Cloud

Commands for managing task-level concurrency limits.
Commands for interacting with Prefect settings.

Deploy a flow from this project by creating a deployment.
Commands for working with deployments.

Commands for development.

Commands for interacting with flows.

Commands for interacting with flow runs.

Commands for working with Prefect on Kubernetes.

Commands for interacting with your Prefect profiles.
Commands for interacting with your Prefect project.
Commands for interacting with the Prefect backend.
Commands for interacting with variables.

Get the current Prefect version.

Commands for working with work pools.

Commands for working with work queues.

Commands for starting and interacting with workers.

144

Search in the Ul

cmd + k or @

fl

Flow run

hissing-flamingo

Flow

my-flow

Block type

dbt Cloud Credentials

Credentials block for credential use across dbt Cloud tasks and flows.

145

102 Recap

You’ve seen more of the power of Prefect.

- Tasks

- Logging

- States

- Retries

- Caching

- Results

- Artifacts

- More resources: help & search

146

Lab 102

Lab 102

- Use a flow that grabs weather data from
open-meteo

- Add at least three tasks

- Add retries

- Run your flow

- Inspect in the Ul

- Stretch: create an artifact

- Stretch: add caching

148

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

1.
2.

/.
8.
C

10.
11.

149

set up logging?
do it every hour?

add collaborators to run and view - who don’t code?

send me a message when it succeeds?

run it in a Docker container-based environment?

pause for input?

automatically declare an incident when a % of workflows fail?
automatically run it in response to an event?

103 - Blocks & Cloud

PREFECT

103 Agenda

- Blocks E=
Cloud features
Automations
Events

151

@ Blocks &

Blocks

Blocks are a cool Prefect feature

Available on Cloud and self-hosted

-

\\

e

Blocks

Configuration

+

Code

154

Blocks

The Block mullet:

Structured form in front,

flexible code in back

159

Create a Block from the UI

? Q Blocks +

jeffprefectio
dev-workspace-jeff

Dashboard @

Flow Runs

Flows Add a block to get started

Deployments Blocks securely store credentials and configuration to easily manage connections
to external systems.

Work Pools

Blocks Add Block + View Docs (]

Variables

Automations

156

157

Create a block from the Ul - choose a block type

Remote File System

Store data as a file on a remote file
system. Supports any remote file
system supported by ‘fsspec’. The
file system is specified using a
protocol. For example, "s3://my-...

get-directory put-directory
read-path write-path

Add +

S3
Store data as a file on AWS S3.
get-directory put-directory

read-path write-path

Add +

aws

S3 Bucket

Block used to store data using AWS
S3 or S3-compatible object storage
like MinlO. This block is part of the
prefect-aws collection. Install
prefect-aws with pip install...

get-directory put-directory

read-path write-path

Add +

Secret

A block that represents a secret
value. The value stored in this block
will be obfuscated when this block
is loggad or shown in the Ul.

Add +

Shell Operation

A block representing a shell
operation, containing multiple
commands. For long-lasting
operations, use the trigger method
and utilize the block as a context...

Add +

Slack Credentials

Block holding Slack credentials for
use in tasks and flows. This block is
part of the prefect-slack collection.
Install prefect-slack with *pip install
prefect-slack” to use this block.

Add +

Slack Incoming Webhook

Slack Webhook

Create a block from the Ul

Blocks / Choose a Block / Slack Webhook / Create

Block Name
Webhook URL Slack Webhook
Slack incoming webhook URL used to send notifications. Enables sending notifications via
a provided Slack webhook.
https://hooks.slack.com/XXX notify
Notify Type (Optional)
The type of notification being performed; the prefect_default is a plain notification that does not attach an image.
prefect_default s
Cancel Create

158

158

Block types in Ul - filter by capability

Blocks / Choose a Block

If you don't see a block for the service you're using, check out our Collections Catalog to view a list of i

9 Blocks

Discord Webhook

Enables sending notifications via a provided
Discord webhook.

notify

Add +

Opsgenie Webhook

Enables sending notifications via a provided
Opsgenie webhook.

notify

Add +

Twilio SMS

Enables sending notifications via Twilio SMS.

notify

Add +

Email

Block that allows an email to be sent to a list of
email addresses via Sendgrid. This block is
only available for use within automations and
cannot be used within user flows.

notify

Add +

Pager Duty Webhook

Enables sending notifications via a provided
PagerDuty webhook.

notify

Add +

and their ing blocks.

Q Search blocks

Mattermost Webhook

Enables sending notifications via a provided
Mattermost webhook.

notify

Add +

Sendgrid Email

Enables sending notifications via Sendgrid
email service.

notify

Add +

Capability: notify

L
L
Microsoft Teams Webhook

Enables sending notifications via a provided
Microsoft Teams webhook.

notify

Add +

Slack Webhook

Enables sending notifications via a provided
Slack webhook.

notify

Add +

Under the hood, block types are Python classes

4

¢

Nl e 3

160

161

Blocks are instances of those Python classes

Blocks / jaffle-shop

Paste this snippet into your flows to use this block

from dataplatform.blocks import Dbt

dbt = Dbt.load("jaffle-shop")

Workspace

default

Path To Dbt Project
dbt_jaffle_shop

Retries

3

Retry Delay Seconds
10

Dbt
A block for interacting with dbt
dbt_cli

dbt_run_from_manifest

Create a block in Python

from prefect.blocks.system import Secret

my_secret_block = Secret(value="shhh!-it's-a-secret")

(YA VaVaVaVs

my_secret_block.save(name="secret-thing")

162

163

Retrieve and use a block in Python

from prefect.blocks.system import Secret

secret_block = Secret.load("secret-thing")
print(secret_block.get())

Blocks

Reusable, modular, configuration + code

- Better than hard coding
Nestable

Stored in db

- Can create own types

164

Integrations

Integrations

docs.prefect.io/integrations/cataloq/

166

https://docs.prefect.io/collections/catalog/

Integrations

Python packages that add convenience

- Template to create your own
- Can contribute to the community
- Often add new block types you will register

167

l

X Prefect Cloud

Prefect Cloud

- Server is hosted by Prefect
- Workspaces

- Service Accounts

- RBAC

- SSO

- Automations

- Events

169

170

Prefect Cloud Workspaces

- Paid plans can have multiple workspaces
- Each workspace is self-contained

Prefect Cloud - Free Tier

- 2 free users

- 1 workspace

- 1 work pool

- 7 day flow run history

171

Prefect Cloud - Pro Tier

- Service accounts

- RBAC

- 30-day flow run history
- 72-hour audit log

- Higher rate limits

- More work pools

- More automations

172

Prefect Cloud - Custom Tier

- SSO & SCIM

- Custom roles

- Object access control lists
- Custom most everything @

173

Prefect Cloud

-*
FREE Ve PRO . CUSTOM |
LI LN] 1\
re o1 |
ie CH] 1
is mi .
im mi]
Free Forever = $1,850/Month & Contact Us :
im mil 1
Great for getting started, solo data :: For engineers with production workflows or : : For large teams or for companies with :
practitioners, and proofs-of-concept. : : access management requirements. : : specific security requirements. |
b o LN)
e All core features - o Audit Log e SSO, SCIM, Custom Roles
¢ Automations s e Increased Automations ., e Object-Level Permissions
e Basic Auth & Collaboration LV e Increased Data Retention “ ¢ e Custom Rate Limits]
e Basic Data Retention ’e e Increased Rate Limits A : e Custom Terms, Support |
e L |
am (] Y !

174 ?

Prefect Cloud - Default Roles (Pro + Custom)

Account level

- Owner
- Admin
- Member

Workspace level

- Owner

- Developer
- Runner

- Viewer

- Worker

175

l

e Efror summaries by
Marvin Al

Error summaries by Marvin Al

? Settings
jeffprefectio v Data Controls
Marvin Al
Profile Marvin Al-enabled features may utilize third party models. See our data processing addendum ’ and sub processors documentation” for more information.
API Keys
Billing
Preferences

Feature Previews

Settings
¢ @G¢
Profile
API| Keys
Billing
Preferences
Feature previews
® Help >

Settings

Jeff Hale 5)

jeff@prefect.io Sign out

177

178

Error summaries by Marvin Al

get-info > zircon-tapir

[¥) Failed | (=) 2023/09/25 03:29:38 PM (D 1s O None

Failed due to a IndexError inthe get_info task;range object index out of range.

ml-flow > translucent-pogona

[¥) Failed (5] 2023/09/25 03:16:42PM (©® 1s O 1task run

Failed due to a ZeroDivisionError inthe compute task with message 'division by zero'.

mi-flow > wealthy-firefly

([Completed) (=) 2023/09/2503:16:25PM (® 2s O 1task run

Cloud features: automations, events API, incidents

Dashboard
Flow Runs
Flows
Deployments
Work Pools
Blocks
Variables
Automations
Event Feed
Event Webhooks
Artifacts
Incidents

Settings >

179

Events

Events

- Arecord of what has happened
- A notification of a change

Represent:

- API calls
- State transitions
- Changes in environment

181

Workspace Events

Resource

All resources

< Nov 19th, 2023
06:53 PM

Block @ raw-data-jaffle-shop

Block @ geo-data-warehouse

06:05:16 PM
Nov 20th, 2023

06:05:15 PM
Nov 20th, 2023

06:05:09 PM
Nov 20th, 2023

®
182

Events
< prefect.block.s3-bucket.* X prefect.block. it ion.* X <
n

Nov 20th, 2023
MH 1D 1W Reset ov1PM
134 events

| . L = N 3 oe.
67 events

g L | = L Ze.

Block snowflake connection read sql called
prefect.block.snowflake-connection.read_sql.called

Resource

Block) geo-data-warehouse

Related Resources

prefect.block-type.snowflake-connection Flow run &2 liberal-mule Task run @ get_geographical_data-0 Flow &3 data-cleaning-flow Deployment © k8s-deployment
Work queue & default Work pool & my-k8s-pool

Block snowflake connection load called

prefect.block.snowflake-connection.load.called

Resource

Block) geo-data-warehouse

Related Resources

prefect.block-type.snowflake-connection Flow run &3 liberal-mule Task run @ get_geographical_data-0 Flow &3 data-cleaning-flow Deployment © k8s-deployment

Work queue & default Work pool & my-k8s-pool

Block s3 bucket read path called
prefect.block.s3-bucket.read_path.called
Resource

Block @ raw-data-jaffle-shop

Related Resources

prefect.block-type.s3-bucket Flow run &% wild-inchworm Task run © read_csv_to_df-1 Flow @3 load-in-historical-data

183

Event Feed

Py
°
Workspace Events Beta
© Block events are in Beta. To gather blocks, and events, ient si with prefect config set PREFECT_EXPERIMENTAL_ENABLE_EVENTS_CLIENT='True’
Related Resource Events
‘ All resources < [All events <
Mar 19th, 06:10 PM - Mar 22nd, 10:48 PM
v \ it oV /\/\/\’\ /‘/\ S\ R NJ
Mar 17th, 2023 w o [l Mar 21st, 2023 Mar 23rd, 2023
2:00 AM e 1159 PM
Block Document < collection-registry-github-oken 5426 events
Il IEEETEEE EEE EEE H IS BEEE BBE BEE B IEE IEEE BEE BEE B
Block Document 7 marin-monday-lack-posts-kas-fob 1683 events
E R E EBEEBRBREBREN B BNBBB.] EEE 8
Block Document) pd-cncallslack-update-kBs-job 819 events
LB &= B &5 & & § _§B _§ _§B _§ _§B &8 _§B _§ __§N _§ N __&§ | N &]
Block Document © closed-won-kBs-job 756 events
L 5 &8 _§ &' & & & § o & _§ & __§ _§ _§ _§ _§ | B _§~_]
Block Document collection-registry-Updaterjob 460 events
IIEETEEE BEE EEE B BEEETEEE BEE BEE = IS IEEE BEE BEE e
Block Document © collection-registry-result-storaga s
Il DEEE BEE BEE EEm H BN BEEE IEE EE = IS IEEE BN BEE e

See More,

* Flow run scheduled
prefact flow-run.Scheduled
Resource
Flow run 2 steady-ocelot
Related Resources
Flow G2 Manday Flow Deployment (&) Marvin Monday Siack Posts Work Queue £ Internal-tools-cluster 1 other resource

Block kubernetes job get client called

alled
Resource

® P
Related Resources
1 resource:

Block kubernetes job get batch client called
prefact block kubernetes:

Block Document () marvin-monday-siack-posts-kBs-job.
Related Resources
1 resource

10:30:24 PM + Flow run completed

Events

Power several Cloud features:

- Flow run logs
- Audit logs
- Automations (triggers)

184

l

e Automations 4

Automations

Cloud only
Flexible framework

- If Trigger happens, do Action
- If Trigger doesn’t happen in a time period, do
Action

186

Automation examples

- If a flow run with tag prod fails, send an email
- If a data quality check fails, run a deployment to

fetch more data
- If a work pool changes state to Not Ready, create

an incident %

187

Create an automation

Trigger: flow run failure
Action: notification - emaiil

Automations + Documentation &

=)

Create an automation to get started
Automations bring reactivity to your data stack. Create an automation to

configure triggers and actions based on events.

Add Automation + View Docs

188

Automation trigger

Automations / Create Documentation @

Trigger Actions Details

Trigger Type
[Flow run state 3
Form JSON
Flows
All flows s
Flow Run Tags
All tags o
Flow Run
Enters ¢ All run states 2
Cancel Previous Next
Related Events
%3
1 89 Apr 28th, 2024 May 4th, 2024

12:00 AM 100N

190

Automation action

Automations / Create

@ Trigger Actions

Action1

Action Type

Documentation ¢

Details

[Send a notification

<>
S

Block

Subject

Prefect flow run notification

Body

4 Add +

Flow run {{ flow.name }}/{{ flow_run.name }} observed in state ‘{{ flow_run.state.name })

Flow ID: {{ flow_run.flow_id }}

Flow run ID: {{ flow_run.id }}

Flow run URL: {{ flow_run|ui_url }}

State message: {{ flow_run.state.message }}

Create a block with notify capability

Blocks / Choose a Block

If you don't see a block for the service you're using, check out our Collections Catalog & to view a list of
integrations and their corresponding blocks.

10 Blocks ’ Q [search blocks w Capability: notify ¢
Discord Webhook Email Mattermost Webhook
Enables sending notifications Block that allows an email to Enables sending notifications
via a provided Discord be sent to a list of email via a provided Mattermost
webhook. addresses via Sendgrid. This webhook.

" block is only available for use "
L4 within automations and cann... DOy
notify
Add + Add + Add +

191

Create an Email block

Blocks / Choose a Block / Email / Create

Block Name

Emails
List of email addresses to send the email to

Cancel

192

Format

Create

Email

Block that allows an email to be
sent to a list of email addresses
via Sendgrid. This block is only
available for use within
automations and cannot be us...

notify

Create an Email block

Name and save your automation.

Now you'll receive an email when a flow run changes state!

193

103 Recap

You’ve learned about

- Blocks

- Integrations

- Prefect Cloud features

- Error summaries by Marvin Al
- Events

- Automations

194

Lab 103

103 Lab

- Make an email notification automation for a flow
run completion

i

- ! use an Email block type
- Run a flow a few times from the CLI

- See the event feed in the Ul
- Stretch: create an automation that filters by a flow
run tag - set the tag in your deployment

196

If you give an engineer a job...

Could you just fetch this data and save it? Oh, and ...

CARCIR=NCORIDNS

—
'0|‘

. . N
N —

197

set up logging?

do it every hour?

visualize the dependencies?
automatically retry if it fails?

create an artifact for human viewing?
add caching?

run it in a Docker container-based environment?

pause for input?

automatically declare an incident when a % of workflows fail?
automatically run it in response to an event?

