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Slack

✅ Join Prefect Community Slack 

✅ Join the pacc- channel for the course
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Norms
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Norms

Code of conduct

● We expect all participants to be kind and respectful  
● Reach out to any of the instructors via Slack if you 

see or experience an issue 
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https://docs.prefect.io/latest/contributing/overview/?h=conduct#prefect-code-of-conduct


Norms

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise to ask a question
Slack
● Use threads
● Emoji responses 🙂
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Introductions
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Goals
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Goals

1. Competence with Prefect 2 so you can build 
workflow applications

2. Connect with each other
3. Have fun! 🎉
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Overview
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What is Prefect?

Prefect is an orchestration and 
observability platform that empowers 
developers to build and scale resilient 
code quickly, turning scheduled jobs into 
resilient, data applications. 💙
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Prefect helps you avoid 
roadblocks on the route to 
production





Why workflow management?

Answers the questions:

● When?
● Where?
● How?
● Who?
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When?

● Ad hoc (manually)
● On a schedule
● In response to events
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Where? 

● Locally
● Easily move to cloud providers 
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How?

● Docker, K8s, or a subprocess
● From the UI, CLI, or code 
● Human-in-the-loop approval workflow option
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Who?

● Auth - SSO/SCIM
● RBAC
● Auditable
● Object level access controls
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Why Prefect for workflow management?

- Pythonic
- Monitoring & observability
- With teams: standardized workflow management is a 

must - Prefect provides guardrails
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Understand the state of your workflows
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Orchestrate and observe 
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?
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Business outcomes 

- Save time ⏱
- Save money 💰
- Increase productivity 🚀
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101 - Prefect basics
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101 Agenda

- Setup: version, login, set
- From Python function to Prefect flow
- Ceate a deployment with .serve()
- Run a deployment
- Deployment schedules
- Resources
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prefect version
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Prefect information in the CLI

prefect version
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Run prefect version now

If you see version lower than 2.18.1

pip install -U prefect

(You can do this and any of the other items you’ll see 
on upcoming slides during the first lab)
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Prefect has two options for server interaction

1. Self-host a Prefect server
a. You spin up a local server
b. Backed by SQLite db (or PostgreSQL)

2. Use the Prefect Cloud platform
a. Free tier
b. Organization management capabilities on other tiers
c. Additional features such as automations, push work 

pools, managed work pools, metrics, incidents
d. No database management required
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To the Cloud

Like other ducks, Minerva is into clouds. 
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Prefect Cloud

Go to app.prefect.cloud in browser

- Sign up or sign in
- Use a free personal account if you don’t want to 

use an organization account
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http://app.prefect.cloud
http://app.prefect.cloud


Prefect profiles
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Prefect profiles

- Persistent settings for interacting with Prefect
- One profile active at all times
- Common to switch between: 

- Cloud and a self-hosted Prefect server
- Cloud workspaces
- Saved settings such as logging level
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Prefect profiles 

List: prefect profile ls
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Prefect profiles

- Profiles live in ~/.prefect/profiles.toml 📁
- Your profile stays active until you switch to another 

profile 🙂
- Save connection info to Prefect Cloud in a profile
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Prefect Cloud

Authenticate your CLI via browser or API key:

prefect cloud login

Select Log in with a web browser

Creates and saves an API key for you 🔑
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Prefect Cloud

Or, if UI doesn’t work: create and paste an API key 

Manually create an API key from Prefect Cloud in 
the UI
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Prefect Cloud - API key
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Prefect Cloud - API key
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Flows
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Course project 

Fetch and use weather forecast data from 
Open-Meteo 🌦🌡
open-meteo.com
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https://open-meteo.com/en


Starting point: basic Python function
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Flows

- Add a Prefect @flow decorator
- Most basic Prefect object
- All you need to start
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Make it a flow
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Run the code: python my_file.py
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Check it out your flow run from the Flow Runs tab in the UI
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Flows give you

- Auto logging 
- State tracking info sent to API
- Input arguments type checked/coerced
- Timeouts can be enforced
- Lots of other benefits you’ll see soon 🚀
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Deployments
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Deployments

Turn your workflow into an interactive application! 🎉
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Deployments

- Server-side representation of a flow
- Contains meta-data for remote orchestration
- Can be run on various infrastructure
- Can be kicked off

- manually (from the UI or CLI)
- on a schedule
- automatically, in response to an event trigger 
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.serve() method

Create a deployment by calling the flow function’s 
.serve() method.
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.serve() method

Run the script - creates a deployment and starts a 
server
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You just made a deployment!
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Deployment

- Wraps your flow: turns it into a workflow 
application

- Contains all the needed metadata to run your flow 
in production

- Your flow’s passport to orchestration land!
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Check out the deployment in the UI

Deployment page
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Run a deployment
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Run manually from UI: Run -> Quick run 
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Adjust the entrypoint flow params with a Custom run
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View the flow run logs in the UI (or CLI)
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Run deployment manually from CLI

prefect deployment run 
my_entrypoint_flow:my_deployment
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.serve()

Shut down the server with control + c
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Scheduling
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Create a deployment schedule

1. When creating a deployment 
2. After deployment creation in the UI or CLI
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Create, pause, and delete schedules from the UI
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Click + Schedule on the Deployment page in the UI
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Add a schedule when creating a deployment with .serve() 
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Schedule types

- Interval
- Cron
- RRule
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Choose Interval or Cron if in the UI
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RRule

RRule cheat sheet: https://jkbrzt.github.io/rrule/

Or ask Marvin (another Prefect package)  pip install marvin
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https://jkbrzt.github.io/rrule/
https://www.askmarvin.ai/


Pausing and resuming deployment schedules
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Pause/resume a deployment’s schedules from UI  
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 Note ⏸ 

Shutting down your server with .serve() pauses a 
deployment’s schedules 
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Pause/resume individual schedules from UI 
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Parameters
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Parameters - argument values for entrypoint flow function

If your flow function has params and no defaults, you 
must feed it (give it values).
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Parameters options 

1. Make default arguments in flow function definition
2. Can override at deployment creation
3. Can override both of the above at runtime 
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Parameters in the UI at runtime

Collaborators can run with custom values in a 
Custom run in the UI
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Parameters at deployment creation time 

Can specify in .serve()
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Parameters from the CLI at runtime

prefect deployment run parametrized/dev --param user=Marvin 
--param answer=42

OR
prefect deployment run parametrized/dev --params '{"user": 
"Marvin", "answer": 42}'
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Terms recap

Flow = a workflow

Flow run = an individual run of a flow

Deployment = a workflow application 

- Can schedule repeated flow runs 
- Can run remotely 
- Other team members can access
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Resources
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Docs - docs.prefect.io

Use the docs 
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Docs - docs.prefect.io
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Prefect Community Slack 

Lots of helpful Q & A from the community and Prefect 
staff
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#ask-marvin: Community Slack channel
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Prefect codebase

github.com/PrefectHQ/prefect

- Dig into the code
- Create an issue
- Make a PR
- Give it a ⭐
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https://github.com/PrefectHQ/prefect


101 Recap

You’ve seen how to get started with Prefect!
- prefect version
- Prefect Profiles
- From Python function to Prefect flow
- Create a deployment with flow.serve()
- Run a deployment from the UI
- Create and pause schedules
- Resources: docs, Slack, Prefect GitHub repo
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Lab 101
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Lab norms for breakout rooms

1. 🙂 Introduce yourselves 
2. 🎥 Camera on (if possible) 
3. 💻 One person shares screen (if you need to leave and 

come back to Zoom to enable screen sharing, do that now)
4. 󰳕 Everyone codes
5. 🙋 Each person talks
6. 📝 Share code in Slack thread - learn from other groups
7. 😌 Low-pressure, welcoming environment: lean in 
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101 Lab - ❗see course GitHub repo for example 
code 

Use Open-Meteo API -

- Authenticate your CLI to Prefect Cloud
- Fine to use a personal account or a workspace 
- Take a function that fetches data and make it a flow
- Use .serve() method to deploy your flow
- Run your flow from the UI 
- Create a schedule for your deployment
- Shut down your server
- Run a deployment from the CLI, override the params
- API docs: open-meteo.com/en/docs
- Example: wind speed for the last hour:

weather.json()["hourly"]["windspeed_10m"][0]
89

https://open-meteo.com/en/docs


If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it a workflow response to an event?
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102 - Intro to orchestration
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102 Agenda

- Tasks
- Logging
- Retries
- Results 
- Artifacts
- Caching
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Tasks
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Tasks

Add the @task decorator to a function

- Enable task retries
- Enable caching
- Enable easy async
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Starting Point: example pipeline functions 

1. Fetch weather data and return it ✅
2. Save data to csv and return success message 🙂
3. Pipeline to call 1 and 2 📞
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Fetch data function
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Save data function
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Pipeline (assembly) function
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Tasks

Turn the first two functions into tasks with the @task 
decorator
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Turn into a task
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Turn into a task
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Pipeline flow function

Pass the result of one task to another inside a flow
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Logs from flow run
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Visualize dependencies in the UI
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Tasks dos and don’ts

- ⛔ Don’t pass huge amounts of info between tasks
- ✅ Do keep tasks small

Note: Prefect is super Pythonic - conditionals are 👍
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Logging 
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Log print statements with log_prints

@flow(log_prints=True)
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Log print statements with log_prints

@flow(log_prints=True)

Want to log print statements by default?

Set environment variable 

export PREFECT_LOGGING_LOG_PRINTS = True

(or set in your Prefect Profile)
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Change logging level

Prefect default logging level: INFO

Change to DEBUG

Set environment variable: 

export PREFECT_LOGGING_LEVEL="DEBUG"

109



Logging

Create custom logs with get_run_logger
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Logging

Output with INFO logging level set:
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Logging

Output with DEBUG logging level set:
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Retries 
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Retries

Specify in task or a flow decorator

@task(retries=2)

@flow(retries=3)
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Flow retries
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Automatic retry
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Automatic retry with delay

117



Automatic retry with delay

Specify in task or flow decorator 

@task(retries=2, retry_delay_seconds=0.1)
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Task retries with delay

👆You can pass a list of values or an exponential_backoff 
to retry_delay_seconds. 
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States
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Prefect flow run states

What’s the state of your workflows?
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Prefect flow run states
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Prefect flow run states
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Results
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Results

The data returned by a flow or a task

1 is the result
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Passing results
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Pass results from one task to another so Prefect can 
discover dependency relationships at runtime



Results

👆By default, Prefect returns a result that is not 
persisted to disk. It is only stored in memory.
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Persist results with persist_result=True
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Results

Info about a result is viewable in the UI - the result is not 
viewable
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Persisted results

- Stored in .PREFECT/storage folder by default
- Pickled by default 🥒
- You can use other serializer or compress
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Results - remote storage

Use a block (future topic) to store results in cloud provider 
storage
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Caching
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Caching

What? 

Why?

⚠ task only 

Requires persisting results (so must be serializable)
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Caching: cache_key_fn

@task(cache_key_fn=task_input_hash)
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Caching

First run

Second run
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Caching: cache_expiration ⏳
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Artifacts
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Artifacts

Persisted outputs such as Markdown, tables, or links. 
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Artifacts

- Meant for human consumption
- Examples:

- Model scores
- Data quality checks
- Reports

- Gets stored in the db
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Artifacts - Markdown example
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Artifacts - Markdown Example

Access from Artifacts page 

(or Flow Runs if part of a flow run)
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More helpful 
resources
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Prefect CLI

Start commands with prefect  --help is always available

143



prefect --help
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Search in the UI

cmd + k or 🔍 
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102 Recap

You’ve seen more of the power of Prefect.

- Tasks
- Logging
- States
- Retries 
- Caching
- Results
- Artifacts
- More resources: help & search 
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Lab 102
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Lab 102

- Use a flow that grabs weather data from 
open-meteo

- Add at least three tasks
- Add retries
- Run your flow
- Inspect in the UI
- Stretch: create an artifact
- Stretch: add caching
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?
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103 - Blocks & Cloud features
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103 Agenda

- Blocks 🧱
- Cloud features
- Automations 
- Events 
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Blocks 🧱
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Blocks

Blocks are a cool Prefect feature

Available on Cloud and self-hosted 
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Blocks

   Configuration

+

Code
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Blocks

The Block mullet:

Structured form in front, 

flexible code in back
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Create a Block from the UI

156



Create a block from the UI - choose a block type

157



Create a block from the UI
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Block types in UI - filter by capability 
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Under the hood, block types are Python classes 
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Blocks are instances of those Python classes
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Create a block in Python
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Retrieve and use a block in Python
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Blocks

Reusable, modular, configuration + code

- Better than hard coding
- Nestable
- Stored in db
- Can create own types
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Integrations
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Integrations

docs.prefect.io/integrations/catalog/
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https://docs.prefect.io/collections/catalog/


Integrations

Python packages that add convenience 

- Template to create your own
- Can contribute to the community
- Often add new block types you will register
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Prefect Cloud
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Prefect Cloud 

- Server is hosted by Prefect
- Workspaces
- Service Accounts
- RBAC
- SSO 
- Automations
- Events
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Prefect Cloud Workspaces

- Paid plans can have multiple workspaces
- Each workspace is self-contained
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Prefect Cloud - Free Tier

- 2 free users 
- 1 workspace
- 1 work pool
- 7 day flow run history
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Prefect Cloud - Pro Tier

- Service accounts
- RBAC
- 30-day flow run history
- 72-hour audit log
- Higher rate limits
- More work pools
- More automations
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Prefect Cloud - Custom Tier

- SSO & SCIM
- Custom roles
- Object access control lists
- Custom most everything 🙂
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Prefect Cloud 
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Prefect Cloud - Default Roles (Pro + Custom)

Account level

- Owner
- Admin
- Member

Workspace level

- Owner
- Developer
- Runner
- Viewer
- Worker
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Error summaries by
Marvin AI 
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Error summaries by Marvin AI

Screenshot 
2023-09-24 at 
12.11.58 PM
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Error summaries by Marvin AI

Screenshot 
2023-09-24 at 
12.11.58 PM
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Cloud features: automations, events API, incidents
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Events
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Events

- A record of what has happened
- A notification of a change

Represent:

- API calls
- State transitions
- Changes in environment
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182



Event Feed
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Events

Power several Cloud features:

- Flow run logs
- Audit logs
- Automations (triggers)
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Automations ⚡
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Automations

Cloud only

Flexible framework

- If Trigger happens, do Action
- If Trigger doesn’t happen in a time period, do 

Action
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Automation examples

- If a flow run with tag prod fails, send an email 📧
- If a data quality check fails, run a deployment to 

fetch more data 📊
- If a work pool changes state to Not Ready, create 

an incident 🚨
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Create an automation 

188

Trigger: flow run failure 
Action: notification - email



Automation trigger
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Automation action

190



Create a block with notify capability
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Create an Email block
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Create an Email block

Name and save your automation.

Now you’ll receive an email when a flow run changes state! 
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103 Recap

You’ve learned about

- Blocks
- Integrations
- Prefect Cloud features
- Error summaries by Marvin AI
- Events
- Automations 
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Lab 103
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103 Lab 

- Make an email notification automation for a flow 
run completion 

- ❗use an Email block type
- Run a flow a few times from the CLI
- See the event feed in the UI
- Stretch: create an automation that filters by a flow 

run tag - set the tag in your deployment
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If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?
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