
PACC
Prefect Associate
Certification Course

Slack

✅ Join Prefect Community Slack

✅ Join the pacc- channel for the course

2

Norms

3

Norms

Code of conduct

● We expect all participants to be kind and respectful
● Reach out to any of the instructors via Slack if you

see or experience an issue

4

https://docs.prefect.io/latest/contributing/overview/?h=conduct#prefect-code-of-conduct

Norms

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise to ask a question
Slack
● Use threads
● Emoji responses 🙂

5

Introductions

6

Goals

7

Goals

1. Competence with Prefect 2 so you can build
workflow applications

2. Connect with each other
3. Have fun! 🎉

8

Overview

9

What is Prefect?

Prefect is an orchestration and
observability platform that empowers
developers to build and scale resilient
code quickly, turning scheduled jobs into
resilient, data applications. 💙

10

Prefect helps you avoid
roadblocks on the route to
production

Why workflow management?

Answers the questions:

● When?
● Where?
● How?
● Who?

13

When?

● Ad hoc (manually)
● On a schedule
● In response to events

14

Where?

● Locally
● Easily move to cloud providers

15

How?

● Docker, K8s, or a subprocess
● From the UI, CLI, or code
● Human-in-the-loop approval workflow option

16

Who?

● Auth - SSO/SCIM
● RBAC
● Auditable
● Object level access controls

17

Why Prefect for workflow management?

- Pythonic
- Monitoring & observability
- With teams: standardized workflow management is a

must - Prefect provides guardrails

18

Understand the state of your workflows

19

Orchestrate and observe

20

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?

21

Business outcomes

- Save time ⏱
- Save money 💰
- Increase productivity 🚀

22

101 - Prefect basics

23

101 Agenda

- Setup: version, login, set
- From Python function to Prefect flow
- Ceate a deployment with .serve()
- Run a deployment
- Deployment schedules
- Resources

24

prefect version

25

Prefect information in the CLI

prefect version

26

Run prefect version now

If you see version lower than 2.18.1

pip install -U prefect

(You can do this and any of the other items you’ll see
on upcoming slides during the first lab)

27

Prefect has two options for server interaction

1. Self-host a Prefect server
a. You spin up a local server
b. Backed by SQLite db (or PostgreSQL)

2. Use the Prefect Cloud platform
a. Free tier
b. Organization management capabilities on other tiers
c. Additional features such as automations, push work

pools, managed work pools, metrics, incidents
d. No database management required

28

To the Cloud

Like other ducks, Minerva is into clouds.

29

Prefect Cloud

Go to app.prefect.cloud in browser

- Sign up or sign in
- Use a free personal account if you don’t want to

use an organization account

30

http://app.prefect.cloud
http://app.prefect.cloud

Prefect profiles

31

Prefect profiles

- Persistent settings for interacting with Prefect
- One profile active at all times
- Common to switch between:

- Cloud and a self-hosted Prefect server
- Cloud workspaces
- Saved settings such as logging level

32

Prefect profiles

List: prefect profile ls

33

Prefect profiles

- Profiles live in ~/.prefect/profiles.toml 📁
- Your profile stays active until you switch to another

profile 🙂
- Save connection info to Prefect Cloud in a profile

34

Prefect Cloud

Authenticate your CLI via browser or API key:

prefect cloud login

Select Log in with a web browser

Creates and saves an API key for you 🔑

35

Prefect Cloud

Or, if UI doesn’t work: create and paste an API key

Manually create an API key from Prefect Cloud in
the UI

36

Prefect Cloud - API key

37

Prefect Cloud - API key

38

Flows

39

Course project

Fetch and use weather forecast data from
Open-Meteo 🌦🌡
open-meteo.com

40

https://open-meteo.com/en

Starting point: basic Python function

41

Flows

- Add a Prefect @flow decorator
- Most basic Prefect object
- All you need to start

42

Make it a flow

43

Run the code: python my_file.py

44

Check it out your flow run from the Flow Runs tab in the UI

45

Flows give you

- Auto logging
- State tracking info sent to API
- Input arguments type checked/coerced
- Timeouts can be enforced
- Lots of other benefits you’ll see soon 🚀

46

Deployments

47

Deployments

Turn your workflow into an interactive application! 🎉

48

Deployments

- Server-side representation of a flow
- Contains meta-data for remote orchestration
- Can be run on various infrastructure
- Can be kicked off

- manually (from the UI or CLI)
- on a schedule
- automatically, in response to an event trigger

49

.serve() method

Create a deployment by calling the flow function’s
.serve() method.

50

.serve() method

Run the script - creates a deployment and starts a
server

51

You just made a deployment!

52

Deployment

- Wraps your flow: turns it into a workflow
application

- Contains all the needed metadata to run your flow
in production

- Your flow’s passport to orchestration land!

53

Check out the deployment in the UI

Deployment page

54

Run a deployment

55

Run manually from UI: Run -> Quick run

56

Adjust the entrypoint flow params with a Custom run

57

View the flow run logs in the UI (or CLI)

58

Run deployment manually from CLI

prefect deployment run
my_entrypoint_flow:my_deployment

59

.serve()

Shut down the server with control + c

60

Scheduling

61

Create a deployment schedule

1. When creating a deployment
2. After deployment creation in the UI or CLI

62

Create, pause, and delete schedules from the UI

63

Click + Schedule on the Deployment page in the UI

64

Add a schedule when creating a deployment with .serve()

65

Schedule types

- Interval
- Cron
- RRule

66

Choose Interval or Cron if in the UI

67

RRule

RRule cheat sheet: https://jkbrzt.github.io/rrule/

Or ask Marvin (another Prefect package) pip install marvin

68

https://jkbrzt.github.io/rrule/
https://www.askmarvin.ai/

Pausing and resuming deployment schedules

69

Pause/resume a deployment’s schedules from UI

70

 Note ⏸

Shutting down your server with .serve() pauses a
deployment’s schedules

71

Pause/resume individual schedules from UI

72

Parameters

73

Parameters - argument values for entrypoint flow function

If your flow function has params and no defaults, you
must feed it (give it values).

74

Parameters options

1. Make default arguments in flow function definition
2. Can override at deployment creation
3. Can override both of the above at runtime

75

Parameters in the UI at runtime

Collaborators can run with custom values in a
Custom run in the UI

76

Parameters at deployment creation time

Can specify in .serve()

77

Parameters from the CLI at runtime

prefect deployment run parametrized/dev --param user=Marvin
--param answer=42

OR
prefect deployment run parametrized/dev --params '{"user":
"Marvin", "answer": 42}'

78

Terms recap

Flow = a workflow

Flow run = an individual run of a flow

Deployment = a workflow application

- Can schedule repeated flow runs
- Can run remotely
- Other team members can access

79

Resources

80

Docs - docs.prefect.io

Use the docs

81

Docs - docs.prefect.io

82

Prefect Community Slack

Lots of helpful Q & A from the community and Prefect
staff

83

#ask-marvin: Community Slack channel

84

Prefect codebase

github.com/PrefectHQ/prefect

- Dig into the code
- Create an issue
- Make a PR
- Give it a ⭐

85

https://github.com/PrefectHQ/prefect

101 Recap

You’ve seen how to get started with Prefect!
- prefect version
- Prefect Profiles
- From Python function to Prefect flow
- Create a deployment with flow.serve()
- Run a deployment from the UI
- Create and pause schedules
- Resources: docs, Slack, Prefect GitHub repo

86

Lab 101

87

Lab norms for breakout rooms

1. 🙂 Introduce yourselves
2. 🎥 Camera on (if possible)
3. 💻 One person shares screen (if you need to leave and

come back to Zoom to enable screen sharing, do that now)
4. 󰳕 Everyone codes
5. 🙋 Each person talks
6. 📝 Share code in Slack thread - learn from other groups
7. 😌 Low-pressure, welcoming environment: lean in

88

101 Lab - ❗see course GitHub repo for example
code

Use Open-Meteo API -

- Authenticate your CLI to Prefect Cloud
- Fine to use a personal account or a workspace
- Take a function that fetches data and make it a flow
- Use .serve() method to deploy your flow
- Run your flow from the UI
- Create a schedule for your deployment
- Shut down your server
- Run a deployment from the CLI, override the params
- API docs: open-meteo.com/en/docs
- Example: wind speed for the last hour:

weather.json()["hourly"]["windspeed_10m"][0]
89

https://open-meteo.com/en/docs

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it a workflow response to an event?

90

102 - Intro to orchestration

91

102 Agenda

- Tasks
- Logging
- Retries
- Results
- Artifacts
- Caching

92

Tasks

93

Tasks

Add the @task decorator to a function

- Enable task retries
- Enable caching
- Enable easy async

94

Starting Point: example pipeline functions

1. Fetch weather data and return it ✅
2. Save data to csv and return success message 🙂
3. Pipeline to call 1 and 2 📞

95

Fetch data function

96

Save data function

97

Pipeline (assembly) function

98

Tasks

Turn the first two functions into tasks with the @task
decorator

99

Turn into a task

100

Turn into a task

101

Pipeline flow function

Pass the result of one task to another inside a flow

102

Logs from flow run

103

Visualize dependencies in the UI

104

Tasks dos and don’ts

- ⛔ Don’t pass huge amounts of info between tasks
- ✅ Do keep tasks small

Note: Prefect is super Pythonic - conditionals are 👍

105

Logging

106

Log print statements with log_prints

@flow(log_prints=True)

107

Log print statements with log_prints

@flow(log_prints=True)

Want to log print statements by default?

Set environment variable

export PREFECT_LOGGING_LOG_PRINTS = True

(or set in your Prefect Profile)

108

Change logging level

Prefect default logging level: INFO

Change to DEBUG

Set environment variable:

export PREFECT_LOGGING_LEVEL="DEBUG"

109

Logging

Create custom logs with get_run_logger

110

Logging

Output with INFO logging level set:

111

Logging

Output with DEBUG logging level set:

112

Retries

113

Retries

Specify in task or a flow decorator

@task(retries=2)

@flow(retries=3)

114

Flow retries

115

Automatic retry

116

Automatic retry with delay

117

Automatic retry with delay

Specify in task or flow decorator

@task(retries=2, retry_delay_seconds=0.1)

118

Task retries with delay

👆You can pass a list of values or an exponential_backoff
to retry_delay_seconds.

119

States

120

Prefect flow run states

What’s the state of your workflows?

121

Prefect flow run states

122

Prefect flow run states

123

Results

124

Results

The data returned by a flow or a task

1 is the result

125

Passing results

126

Pass results from one task to another so Prefect can
discover dependency relationships at runtime

Results

👆By default, Prefect returns a result that is not
persisted to disk. It is only stored in memory.

127

Persist results with persist_result=True

128

Results

Info about a result is viewable in the UI - the result is not
viewable

129

Persisted results

- Stored in .PREFECT/storage folder by default
- Pickled by default 🥒
- You can use other serializer or compress

130

Results - remote storage

Use a block (future topic) to store results in cloud provider
storage

131

Caching

132

Caching

What?

Why?

⚠ task only

Requires persisting results (so must be serializable)

133

Caching: cache_key_fn

@task(cache_key_fn=task_input_hash)

134

Caching

First run

Second run

135

Caching: cache_expiration ⏳

136

Artifacts

137

Artifacts

Persisted outputs such as Markdown, tables, or links.

138

Artifacts

- Meant for human consumption
- Examples:

- Model scores
- Data quality checks
- Reports

- Gets stored in the db

139

Artifacts - Markdown example

140

Artifacts - Markdown Example

Access from Artifacts page

(or Flow Runs if part of a flow run)

141

More helpful
resources

142

Prefect CLI

Start commands with prefect --help is always available

143

prefect --help

144

Search in the UI

cmd + k or 🔍

145

102 Recap

You’ve seen more of the power of Prefect.

- Tasks
- Logging
- States
- Retries
- Caching
- Results
- Artifacts
- More resources: help & search

146

Lab 102

147

Lab 102

- Use a flow that grabs weather data from
open-meteo

- Add at least three tasks
- Add retries
- Run your flow
- Inspect in the UI
- Stretch: create an artifact
- Stretch: add caching

148

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?

149

103 - Blocks & Cloud features

150

103 Agenda

- Blocks 🧱
- Cloud features
- Automations
- Events

151

Blocks 🧱

152

Blocks

Blocks are a cool Prefect feature

Available on Cloud and self-hosted

153

Blocks

 Configuration

+

Code

154

Blocks

The Block mullet:

Structured form in front,

flexible code in back

155

Create a Block from the UI

156

Create a block from the UI - choose a block type

157

Create a block from the UI

158

Block types in UI - filter by capability

159

Under the hood, block types are Python classes

160

Blocks are instances of those Python classes

161

Create a block in Python

162

Retrieve and use a block in Python

163

Blocks

Reusable, modular, configuration + code

- Better than hard coding
- Nestable
- Stored in db
- Can create own types

164

Integrations

165

Integrations

docs.prefect.io/integrations/catalog/

166

https://docs.prefect.io/collections/catalog/

Integrations

Python packages that add convenience

- Template to create your own
- Can contribute to the community
- Often add new block types you will register

167

Prefect Cloud

168

Prefect Cloud

- Server is hosted by Prefect
- Workspaces
- Service Accounts
- RBAC
- SSO
- Automations
- Events

169

Prefect Cloud Workspaces

- Paid plans can have multiple workspaces
- Each workspace is self-contained

170

Prefect Cloud - Free Tier

- 2 free users
- 1 workspace
- 1 work pool
- 7 day flow run history

171

Prefect Cloud - Pro Tier

- Service accounts
- RBAC
- 30-day flow run history
- 72-hour audit log
- Higher rate limits
- More work pools
- More automations

172

Prefect Cloud - Custom Tier

- SSO & SCIM
- Custom roles
- Object access control lists
- Custom most everything 🙂

173

Prefect Cloud

174

Prefect Cloud - Default Roles (Pro + Custom)

Account level

- Owner
- Admin
- Member

Workspace level

- Owner
- Developer
- Runner
- Viewer
- Worker

175

Error summaries by
Marvin AI

176

Error summaries by Marvin AI

Screenshot
2023-09-24 at
12.11.58 PM

177

Error summaries by Marvin AI

Screenshot
2023-09-24 at
12.11.58 PM

178

Cloud features: automations, events API, incidents

179

Events

180

Events

- A record of what has happened
- A notification of a change

Represent:

- API calls
- State transitions
- Changes in environment

181

182

Event Feed

183

Events

Power several Cloud features:

- Flow run logs
- Audit logs
- Automations (triggers)

184

Automations ⚡

185

Automations

Cloud only

Flexible framework

- If Trigger happens, do Action
- If Trigger doesn’t happen in a time period, do

Action

186

Automation examples

- If a flow run with tag prod fails, send an email 📧
- If a data quality check fails, run a deployment to

fetch more data 📊
- If a work pool changes state to Not Ready, create

an incident 🚨

187

Create an automation

188

Trigger: flow run failure
Action: notification - email

Automation trigger

189

Automation action

190

Create a block with notify capability

191

Create an Email block

192

Create an Email block

Name and save your automation.

Now you’ll receive an email when a flow run changes state!

193

103 Recap

You’ve learned about

- Blocks
- Integrations
- Prefect Cloud features
- Error summaries by Marvin AI
- Events
- Automations

194

Lab 103

195

103 Lab

- Make an email notification automation for a flow
run completion

- ❗use an Email block type
- Run a flow a few times from the CLI
- See the event feed in the UI
- Stretch: create an automation that filters by a flow

run tag - set the tag in your deployment

196

If you give an engineer a job…

Could you just fetch this data and save it? Oh, and …

1. set up logging?
2. do it every hour?
3. visualize the dependencies?
4. automatically retry if it fails?
5. create an artifact for human viewing?
6. add caching?
7. add collaborators to run and view - who don’t code?
8. send me a message when it succeeds?
9. run it in a Docker container-based environment?

10. pause for input?
11. automatically declare an incident when a % of workflows fail?
12. automatically run it in response to an event?

197

