
PACC
Prefect Associate
Certification Course

Slack

✅ Join Prefect Community Slack

✅ Join the pacc- channel for the course

2

Norms

3

Norms

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise to ask a question
Slack
● Use threads
● Emoji responses 🙂

4

Norms

Code of conduct

● We expect all participants to be kind and respectful
● Reach out to any of the instructors via Slack if you

see or experience an issue

5

https://docs.prefect.io/latest/contributing/overview/?h=conduct#prefect-code-of-conduct

Introductions

6

Goals

7

Goals

1. Competence with Prefect so you can build
workflows you can trust

2. Connect with each other
3. Have fun! 🎉

8

Overview

9

Why workflow management?

Answers the questions:

- What?
- When?
- Where?
- How?
- Who?

10

What?

Code that moves and transforms data

11

When?

- Ad hoc (manually)
- On a schedule
- In response to events

12

Where?

- Locally
- In the cloud

13

How?

- Docker, K8s, subprocess
- Trigger from the UI, CLI, code
- Pause for🧍

14

Who?

- Auth - SSO/SCIM
- RBAC
- Auditable

15

What is Prefect?

Prefect is an orchestration and observability
platform that empowers developers to build
resilient workflows you can trust. 💙

16

© Copyright 2024 Prefect Technologies, Inc.© Copyright 2024 Prefect Technologies, Inc.

Prefect data workflow orchestration

Resilience
Faster Recovery with

Resilient Code

Scalability
Scalable compute resources

and governance

Automation
Flexible Orchestration

in Pure Python

© Copyright 2024 Prefect Technologies, Inc.

Flexible orchestration
in Python

- Develop quickly in Python
- Model any workflow
- Run on any compute

© Copyright 2024 Prefect Technologies, Inc.

Recover faster with
resilient code

- Gain visibility
- Respond to failure

automatically
- Build resilient pipelines

FAILED

RESTORE

© Copyright 2024 Prefect Technologies, Inc.

Scalable compute and
governance

- Infrastructure templates
- Limit access appropriately
- Efficiently scale compute

© Copyright 2024 Prefect Technologies, Inc.

Orchestration benefits across your business

Data
engineers

Data science &
ML engineers

AI
engineers

Data platform
engineers

■ Reduce pipeline
errors

■ Increase
productivity
through
automation

■ At-a-glance
understanding

■ Iterate on ML
models faster

■ Reduce data
processing time

■ Move to production
quickly

■ Improve agentic
workflow
troubleshooting
and auditing

■ Unify orchestration
across multiple LLM
tasks and data
sources

■ Self-serve, turn-key
infrastructure setup

■ Faster onboarding

■ Compute
governance

■ Leverage!

Outcome: workflows you can trust

- Save time ⏱
- Save money 💰
- Increase productivity 🚀

22

23

101 Prefect basics:
Create a workflow you
can schedule and
observe

24

101 Agenda

- Setup: version, login
- From Python function to Prefect flow
- Create a deployment with .serve()
- Run a deployment
- Deployment schedules
- Parameters
- Resources

25

prefect version

26

Prefect information in the CLI

prefect version

27

Run prefect version now

If you see version lower than 2.20.3, in your virtual
environment:

pip install -U prefect

(You can do this and any of the other items you’ll see
on upcoming slides during the first lab)

28

Prefect has two options for server interaction

1. Self-host a Prefect server
a. You spin up a local server
b. Backed by SQLite db (or PostgreSQL)

2. Use the Prefect Cloud platform
a. Free tier
b. Organization management capabilities on other tiers
a. Additional features such as event webhooks, push work

pools, managed work pools, incidents
c. No database management required

29

To the Cloud

Like other ducks, Minerva is into clouds.

30

Prefect Cloud

Go to app.prefect.cloud in browser

- Sign up or sign in
- Use a free personal account if you don’t want to

use an organization account

31

http://app.prefect.cloud
http://app.prefect.cloud

Prefect Cloud

Authenticate your CLI

prefect cloud login

Select Log in with a web browser

Creates and saves an API key for you 🔑

32

Prefect Cloud

OR, if UI doesn’t work:

- Select Paste an API key
- Manually create an API key from Prefect Cloud

in the UI

33

Prefect Cloud - API key

(Top left of UI)

34

Prefect Cloud - API key

35

Prefect Cloud

Paste API key at terminal prompt

36

Switch Between Workspaces from the CLI

37

prefect cloud workspace set

Flows: Add superpowers
to your Python 🦸

38

Project

Fetch and use weather forecast data from
Open-Meteo 🌦🌡
open-meteo.com

39

https://open-meteo.com/en

Start: basic Python function

40

Flows

- Add a Prefect @flow decorator
- Most basic Prefect object
- All you need to start

41

Make it a flow

42

Run the code: python my_file.py

43

Check it out your flow run from the Runs page in the UI

44

Flows give you

- Auto logging
- State tracking info sent to API
- Input arguments type checked/coerced
- Timeouts can be enforced
- Lots of other benefits you’ll see soon 🚀

45

Deployments

46

Deployments

Turn your workflow into an interactive application! 🎉
- Switch infrastructure easily
- You and teammates can run:

- manually (from the UI or CLI)
- on a schedule
- in response to an automation trigger

47

Deployments

- Server-side representation of a flow
- Contains metadata for remote orchestration
- Your flow’s passport to orchestration land!

48

.serve() method

Create a deployment by calling the flow function’s
.serve() method.

49

.serve() method

Run the script - creates a deployment and starts a
server

50

You just made a deployment!

51

Check out the deployment in the UI

Deployment page

52

Run a deployment

53

Run manually from UI: Run -> Quick run

54

View the flow run logs in the UI (or CLI)

55

Run deployment manually from CLI

prefect deployment run my_entrypoint_flow:my_deployment

56

.serve()

Shut down the server with control + c

57

Scheduling

58

Create a deployment schedule

1. When creating a deployment
2. After deployment creation in the UI or CLI

59

Create, pause, and delete schedules from the UI

60

Add a schedule when creating a deployment with .serve()

61

Schedule types

- Interval
- Cron
- RRule

62

Choose Interval or Cron if in the UI

63

RRule

RRule cheat sheet: https://jkbrzt.github.io/rrule/

Or ask Marvin (another Prefect package) pip install -U marvin

64

https://jkbrzt.github.io/rrule/
https://www.askmarvin.ai/

Pausing and resuming deployment schedules

65

Pause/resume deployment schedules from UI

66

 Note ⏸

Shutting down your server with .serve() pauses a
deployment’s schedules

67

Parameters

68

Parameters - argument values for entrypoint flow function

If your flow function has params and no defaults, you
must feed it (give it values).

69

Parameter options

1. Make default arguments in flow function definition
2. Can override at deployment creation
3. Can override both of the above at runtime

70

Parameters in the UI at runtime

Collaborators can run with custom values in a
Custom run in the UI

71

Parameters at deployment creation time

Can specify in .serve()

72

Parameters from the CLI at runtime

prefect deployment run parametrized/dev --param user=Marvin
--param answer=42

OR
prefect deployment run parametrized/dev --params '{"user":
"Marvin", "answer": 42}'

73

Resources

74

Docs - docs.prefect.io

Use the docs

75

Docs - docs.prefect.io

76

Prefect Community Slack

Helpful Q & A from the community and Prefect staff

77

#ask-marvin: Community Slack channel

78

Prefect codebase

github.com/PrefectHQ/prefect

- Dig into the code
- Create an issue
- Make a PR
- Give it a ⭐

79

https://github.com/PrefectHQ/prefect

101 Recap

You’ve seen how to get started with Prefect!

- prefect version, login
- From Python function to Prefect flow
- Create a deployment with flow.serve()
- Run a deployment
- Create and pause schedules
- Resources: docs, Slack, Prefect GitHub repo

80

Recap key terms

Flow = a workflow

Flow run = an individual run of a flow

Deployment = a flow + orchestration capabilities

- Can schedule
- Can run remotely
- Other team members can access

81

Lab 101

82

Lab norms for breakout rooms

1. 🙂 Introduce yourselves
2. 🎥 Camera on (if possible)
3. 💻 One person shares screen (if need to leave

Zoom to enable screen sharing, do that now)
4. 󰳕 Everyone codes
5. 🙋 Ask a question if you don’t follow something
6. 😌 Low-pressure, welcoming environment: lean in

83

101 Lab - ❗see course GitHub repo for example
code

Use Open-Meteo API:

- Authenticate your CLI to Prefect Cloud
- Fine to use a personal account or an organization test workspace
- Take a function that fetches data and make it a flow
- Use .serve() method to deploy your flow
- Run your flow from the UI
- Create a schedule for your deployment
- Shut down your server and restart it
- Stretch 1: Run a deployment from the CLI, override the params

API docs: open-meteo.com/en/docs

Example: wind speed for the last hour:

weather.json()["hourly"]["windspeed_10m"][0]
84

https://open-meteo.com/en/docs

102 - Orchestration and
observation: Understand workflow
state and guard against failure

85

102 Agenda

- Tasks
- Logging - observe
- Runtime context - introspect runs
- Retries - automatically retry on failure
- States - understand your workflow state
- Blocks - save configuration with a handy form
- More resources

86

Tasks

87

Tasks

Add the @task decorator to a function to enable

- Task retries
- Caching
- Easy async

88

Starting Point: example pipeline functions

1. Fetch weather data and return it ✅
2. Save data to csv and return success message 🙂
3. Pipeline to call 1 and 2 📞

89

Fetch data function

90

Save data function

91

Pipeline (assembly) function

92

Tasks

Turn the first two functions into tasks with the @task
decorator

93

Turn into a task

94

Turn into a task

95

Pipeline flow function

Pass the result of one task to another inside a flow

96

Logs from flow run

97

Visualize dependencies in the UI

98

Tasks dos and don’ts

- ⛔ Don’t pass huge amounts of data between
tasks

- ✅ Do keep tasks small
- 🙂 You can now use Prefect tasks as a

replacement for Celery tasks

Note: Prefect is super Pythonic - conditionals are 👍
99

Prefect profiles

100

Prefect profiles

- Persistent settings for interacting with Prefect
- One profile active at all times
- Common to switch between:

- Cloud and a self-hosted Prefect server
- Cloud workspaces
- Saved settings such as logging level

101

Prefect profiles

List: prefect profile ls

102

Prefect profiles

Profiles live in ~/.prefect/profiles.toml 📁

103

Prefect profiles

Profile stays active until you switch to another profile

Contains:

1. Connection URL & API key for Prefect Cloud
2. Optional configuration

104

Prefect profiles

Create: prefect profile create my_cloud_profile

Inspect: prefect profile inspect my_cloud_profile

Switch: prefect profile use my_cloud_profile

105

Logging

106

Log print statements with log_prints

@flow(log_prints=True)

Want to log print statements by default?

Set environment variable

export PREFECT_LOGGING_LOG_PRINTS = True

(or set in your Prefect Profile)

107

Change logging level

Prefect default logging level: INFO

Change to DEBUG

Set environment variable:

export PREFECT_LOGGING_LEVEL="DEBUG"

108

Logging

Create custom logs with get_run_logger

109

Logging

Output with INFO logging level set:

110

Logging

Output with DEBUG logging level set:

111

prefect.runtime

112

Module for runtime context access.

Useful for labeling, logs, etc.

Includes:

- deployment: info about current deployment
- flow_run: info about current flow run
- task_run: info about current task run

113

prefect.runtime

114

prefect.runtime

Useful for labeling, logs, etc.

115

prefect.runtime

Retries

116

Retries - guard against failure

Specify in task or a flow decorator

@task(retries=2)

@flow(retries=3)

117

Flow retries

118

Automatic retry

119

Automatic retry with delay

120

Automatic retry with delay

Specify in task or flow decorator

@task(retries=2, retry_delay_seconds=0.1)

121

Task retries with delay

👆You can pass a list of values or an exponential_backoff
to retry_delay_seconds for tasks.

122

States

123

Prefect flow run states

What’s the state of your workflows?

124

Prefect flow run states

125

Prefect flow run states

126

Blocks 🧱

127

Blocks

 Configuration

+

Code

128

Blocks

The Block mullet:

Structured form in front,

flexible code in back

129

Create a Block from the UI

130

Create a block from the UI - choose a block type

131

Create a block from the UI

132

Block types in UI - filter by capability

133

Under the hood, block types are Python classes

134

Blocks are instances of those Python classes (TODO add
python class)

135

Blocks are instances of those Python classes

136

Create a block in Python

137

Retrieve and use a block in Python

138

Blocks

Reusable, modular, configuration + code

- Nestable
- Stored in database
- Can create own types

139

Integrations

140

Integrations

docs.prefect.io/integrations/catalog/

141

https://docs.prefect.io/collections/catalog/

Integrations

Python packages that add convenience

- Template to create your own
- Can contribute to the community
- May contain new block types you’ll register

142

More helpful
resources

143

Prefect CLI

Start commands with prefect --help is always available

144

prefect --help

145

Search in the UI

cmd + k or 🔍

146

102 Recap

You’ve seen how to understand the state of your workflows and
guard against failure.

- Tasks
- Profiles
- Logging
- Retries
- States
- Blocks
- Integrations
- More resources: help & search

147

Lab 102

148

Lab 102

- Use a flow with two tasks that fetches weather data
from open-meteo

- Pass data between the tasks
- Add retries (add an exception to force a failure)
- Run your flow as a Python script
- Stretch 1: Log the name of the flow run
- Stretch 2: Create a block in the UI
- Stretch 3: Load the block in code and use it

149

103 - Work with data and
create automatic alerts

150

103 Agenda

- Work with data to save time and money
- Save results
- Use caching
- Create Markdown artifacts to communicate

insights
- Learn about user management in Prefect Cloud
- Set up automatic notifications for workflow states

151

Results

152

Results

The data returned by a flow or a task

1 is the result

153

Passing results

154

Pass results from one task to another so Prefect can
discover dependency relationships at runtime

Results

👆By default, Prefect returns a result that is not
persisted to disk. It is only stored in memory.

155

Persist results with persist_result=True

156

Persisted results

- Stored in .PREFECT/storage folder by default
- Pickled by default 🥒
- You can use other serializer or compress

157

Results - remote data storage

Store results in cloud provider storage - use a block

158

Working with big data

Read and write data to cloud provider without passing the
data around.

See discussion of options:

docs.prefect.io/guides/big-data/

159

http://docs.prefect.io/guides/big-data/

Caching

160

Caching

What?

Why?

⚠ task only

Requires persisting results (so must be serializable)

161

Caching: cache_key_fn

@task(cache_key_fn=task_input_hash)

162

Caching

First run

Second run

163

Caching: cache_expiration ⏳

164

Artifacts

165

Artifacts

Persisted outputs such as Markdown, tables, or links.

166

Artifacts

- Meant for human consumption
- Examples:

- Model scores
- Data quality checks
- Reports

- Gets stored in the database and shown in the UI

167

Artifacts - Markdown example of weather report

168

Artifacts - Markdown example

Access from UI: Runs timeline or Runs->Artifacts tab

169

Prefect Cloud

170

Prefect Cloud

- Prefect takes care of the server
- User account management (some at higher tiers)

- Workspaces
- Service accounts
- RBAC
- SSO
- Audit logs

- Additional features

171

Prefect Cloud workspaces

- Paid plans can have multiple workspaces
- Each workspace is self-contained

172

Prefect Cloud - Default Roles (Pro + Enterprise)

Account level

- Owner
- Admin
- Member

Workspace level

- Owner
- Developer
- Runner
- Viewer
- Worker

173

Error summaries by
Marvin AI

174

Error summaries by Marvin AI

Screenshot
2023-09-24 at
12.11.58 PM

175

Error summaries by Marvin AI

Screenshot
2023-09-24 at
12.11.58 PM

176

Events

177

Events

- A record of what has happened

Represent:

- API calls
- State transitions
- Changes in environment

178

179

Event feed

Events

Power several Cloud features:

- Flow run logs
- Audit logs
- Automations (triggers)

180

Automations ⚡

181

Automations

Flexible framework

- If Trigger happens, do Action
- If Trigger doesn’t happen in a time period, do

Action

182

Automation examples

- If a flow run with tag prod fails, send an email 📧
- If a data quality check fails, run a deployment to

fetch more data 📊
- If a work pool changes state to Not Ready, create

an incident 🚨

183

Create an automation

184

Trigger: flow run failure
Action: notification - email

Automation trigger

185

Automation action

186

Create a block with notify capability

187

Create an Email block

188

Create an Email block

Name and save your automation.

Now you’ll receive an email when a flow run changes state!

189

103 Recap

You’ve learned about

- Working with data
- Prefect Cloud
- Error summaries by Marvin AI
- Events
- Automations

190

Lab 103

191

103 Lab

- In the UI, make an email notification automation for
a flow run completion

- ❗use an Email block type
- Check out the event feed in the UI
- Stretch 1: Create a flow that contains a task that

takes advantage of caching using task_input_hash
- Stretch 2: Create a Markdown artifact that prints a

weather forecast in a nicely formatted table

192

