
PACC
Prefect Associate 
Certification Course



Slack

✅ Join Prefect Community Slack 

✅ Join the pacc- channel for the course
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Norms
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Norms

Zoom
● Camera on
● Mute unless asking a question
● Use hand raise to ask a question
Slack
● Use threads
● Emoji responses 🙂
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Norms

Code of conduct

● We expect all participants to be kind and respectful  
● Reach out to any of the instructors via Slack if you 

see or experience an issue 
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https://docs.prefect.io/latest/contributing/overview/?h=conduct#prefect-code-of-conduct


Introductions
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Goals
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Goals

1. Competence with Prefect so you can build 
workflows you can trust

2. Connect with each other
3. Have fun! 🎉
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Overview
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Why workflow management?

Answers the questions:

- What?
- When?
- Where?
- How?
- Who?
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What?

Code that moves and transforms data
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When?

- Ad hoc (manually)
- On a schedule
- In response to events
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Where? 

- Locally
- In the cloud
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How?

- Docker, K8s, subprocess
- Trigger from the UI, CLI, code 
- Pause for🧍
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Who?

- Auth - SSO/SCIM
- RBAC
- Auditable
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What is Prefect?

Prefect is an orchestration and observability 
platform that empowers developers to build 
resilient workflows you can trust. 💙
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Prefect data workflow orchestration

Resilience 
Faster Recovery with 

Resilient Code

Scalability 
Scalable compute resources 

and governance

Automation 
Flexible Orchestration 

in Pure Python
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Flexible orchestration 
in Python

- Develop quickly in Python
- Model any workflow
- Run on any compute
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Recover faster with 
resilient code

- Gain visibility
- Respond to failure 

automatically
- Build resilient pipelines

FAILED

RESTORE
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Scalable compute and 
governance

- Infrastructure templates 
- Limit access appropriately
- Efficiently scale compute 
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Orchestration benefits across your business

Data 
engineers

Data science & 
ML engineers

AI 
engineers

Data platform 
engineers

■ Reduce pipeline 
errors 

■ Increase 
productivity 
through 
automation

■ At-a-glance 
understanding

■ Iterate on ML 
models faster

■ Reduce data 
processing time

■ Move to production 
quickly

■ Improve agentic 
workflow 
troubleshooting 
and auditing

■ Unify orchestration 
across multiple LLM 
tasks and data 
sources

■ Self-serve, turn-key 
infrastructure setup 

■ Faster onboarding 

■ Compute 
governance

■ Leverage!



Outcome: workflows you can trust

- Save time ⏱
- Save money 💰
- Increase productivity 🚀

22



23



101 Prefect basics: 
Create a workflow you 
can schedule and 
observe
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101 Agenda

- Setup: version, login
- From Python function to Prefect flow
- Create a deployment with .serve()
- Run a deployment
- Deployment schedules
- Parameters
- Resources
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prefect version

26



Prefect information in the CLI

prefect version
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Run prefect version now

If you see version lower than 2.20.3, in your virtual 
environment:

pip install -U prefect

(You can do this and any of the other items you’ll see 
on upcoming slides during the first lab)
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Prefect has two options for server interaction

1. Self-host a Prefect server
a. You spin up a local server
b. Backed by SQLite db (or PostgreSQL)

2. Use the Prefect Cloud platform
a. Free tier
b. Organization management capabilities on other tiers
a. Additional features such as event webhooks, push work 

pools, managed work pools, incidents
c. No database management required
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To the Cloud

Like other ducks, Minerva is into clouds. 
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Prefect Cloud

Go to app.prefect.cloud in browser

- Sign up or sign in
- Use a free personal account if you don’t want to 

use an organization account
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http://app.prefect.cloud
http://app.prefect.cloud


Prefect Cloud 

Authenticate your CLI

prefect cloud login

Select Log in with a web browser

Creates and saves an API key for you 🔑
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Prefect Cloud

OR, if UI doesn’t work:

- Select Paste an API key
- Manually create an API key from Prefect Cloud 

in the UI
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Prefect Cloud - API key

(Top left of UI)
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Prefect Cloud - API key
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Prefect Cloud

Paste API key at terminal prompt
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Switch Between Workspaces from the CLI
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prefect cloud workspace set



Flows: Add superpowers 
to your Python 🦸
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Project 

Fetch and use weather forecast data from 
Open-Meteo 🌦🌡
open-meteo.com
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https://open-meteo.com/en


Start: basic Python function
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Flows

- Add a Prefect @flow decorator
- Most basic Prefect object
- All you need to start
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Make it a flow
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Run the code: python my_file.py
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Check it out your flow run from the Runs page in the UI
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Flows give you

- Auto logging 
- State tracking info sent to API
- Input arguments type checked/coerced
- Timeouts can be enforced
- Lots of other benefits you’ll see soon 🚀
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Deployments
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Deployments

Turn your workflow into an interactive application! 🎉
- Switch infrastructure easily
- You and teammates can run:

- manually (from the UI or CLI)
- on a schedule
- in response to an automation trigger
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Deployments

- Server-side representation of a flow
- Contains metadata for remote orchestration
- Your flow’s passport to orchestration land!
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.serve() method

Create a deployment by calling the flow function’s 
.serve() method.
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.serve() method

Run the script - creates a deployment and starts a 
server
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You just made a deployment!
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Check out the deployment in the UI

Deployment page
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Run a deployment
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Run manually from UI: Run -> Quick run 

54



View the flow run logs in the UI (or CLI)
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Run deployment manually from CLI

prefect deployment run my_entrypoint_flow:my_deployment
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.serve()

Shut down the server with control + c
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Scheduling
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Create a deployment schedule

1. When creating a deployment 
2. After deployment creation in the UI or CLI
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Create, pause, and delete schedules from the UI
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Add a schedule when creating a deployment with .serve() 
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Schedule types

- Interval
- Cron
- RRule
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Choose Interval or Cron if in the UI
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RRule

RRule cheat sheet: https://jkbrzt.github.io/rrule/

Or ask Marvin (another Prefect package) pip install -U marvin
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https://jkbrzt.github.io/rrule/
https://www.askmarvin.ai/


Pausing and resuming deployment schedules

65



Pause/resume deployment schedules from UI 
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 Note ⏸ 

Shutting down your server with .serve() pauses a 
deployment’s schedules 
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Parameters
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Parameters - argument values for entrypoint flow function

If your flow function has params and no defaults, you 
must feed it (give it values).

69



Parameter options 

1. Make default arguments in flow function definition
2. Can override at deployment creation
3. Can override both of the above at runtime 
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Parameters in the UI at runtime

Collaborators can run with custom values in a 
Custom run in the UI
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Parameters at deployment creation time 

Can specify in .serve()
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Parameters from the CLI at runtime

prefect deployment run parametrized/dev --param user=Marvin 
--param answer=42

OR
prefect deployment run parametrized/dev --params '{"user": 
"Marvin", "answer": 42}'
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Resources
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Docs - docs.prefect.io

Use the docs 
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Docs - docs.prefect.io
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Prefect Community Slack 

Helpful Q & A from the community and Prefect staff
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#ask-marvin: Community Slack channel
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Prefect codebase

github.com/PrefectHQ/prefect

- Dig into the code
- Create an issue
- Make a PR
- Give it a ⭐
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https://github.com/PrefectHQ/prefect


101 Recap

You’ve seen how to get started with Prefect!

- prefect version, login
- From Python function to Prefect flow
- Create a deployment with flow.serve()
- Run a deployment
- Create and pause schedules
- Resources: docs, Slack, Prefect GitHub repo

80



Recap key terms

Flow = a workflow

Flow run = an individual run of a flow

Deployment = a flow + orchestration capabilities

- Can schedule
- Can run remotely 
- Other team members can access
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Lab 101
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Lab norms for breakout rooms

1. 🙂 Introduce yourselves 
2. 🎥 Camera on (if possible) 
3. 💻 One person shares screen (if need to leave 

Zoom to enable screen sharing, do that now)
4. 󰳕 Everyone codes
5. 🙋 Ask a question if you don’t follow something
6. 😌 Low-pressure, welcoming environment: lean in 
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101 Lab - ❗see course GitHub repo for example 
code 

Use Open-Meteo API:

- Authenticate your CLI to Prefect Cloud
- Fine to use a personal account or an organization test workspace 
- Take a function that fetches data and make it a flow
- Use .serve() method to deploy your flow
- Run your flow from the UI 
- Create a schedule for your deployment
- Shut down your server and restart it
- Stretch 1: Run a deployment from the CLI, override the params

API docs: open-meteo.com/en/docs

Example: wind speed for the last hour:

weather.json()["hourly"]["windspeed_10m"][0]
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https://open-meteo.com/en/docs


102 - Orchestration and 
observation: Understand workflow 
state and guard against failure 
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102 Agenda

- Tasks 
- Logging - observe
- Runtime context - introspect runs
- Retries - automatically retry on failure
- States - understand your workflow state
- Blocks - save configuration with a handy form
- More resources
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Tasks
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Tasks

Add the @task decorator to a function to enable

- Task retries
- Caching
- Easy async
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Starting Point: example pipeline functions 

1. Fetch weather data and return it ✅
2. Save data to csv and return success message 🙂
3. Pipeline to call 1 and 2 📞

89



Fetch data function
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Save data function
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Pipeline (assembly) function

92



Tasks

Turn the first two functions into tasks with the @task 
decorator
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Turn into a task
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Turn into a task
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Pipeline flow function

Pass the result of one task to another inside a flow
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Logs from flow run
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Visualize dependencies in the UI
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Tasks dos and don’ts

- ⛔ Don’t pass huge amounts of data between 
tasks

- ✅ Do keep tasks small
- 🙂 You can now use Prefect tasks as a 

replacement for Celery tasks

Note: Prefect is super Pythonic - conditionals are 👍
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Prefect profiles
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Prefect profiles

- Persistent settings for interacting with Prefect
- One profile active at all times
- Common to switch between: 

- Cloud and a self-hosted Prefect server
- Cloud workspaces
- Saved settings such as logging level
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Prefect profiles 

List: prefect profile ls

102



Prefect profiles

Profiles live in ~/.prefect/profiles.toml 📁
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Prefect profiles

Profile stays active until you switch to another profile 

Contains: 

1. Connection URL & API key for Prefect Cloud
2. Optional configuration
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Prefect profiles

Create: prefect profile create my_cloud_profile

Inspect: prefect profile inspect my_cloud_profile

Switch: prefect profile use my_cloud_profile
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Logging 
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Log print statements with log_prints

@flow(log_prints=True)

Want to log print statements by default?

Set environment variable 

export PREFECT_LOGGING_LOG_PRINTS = True

(or set in your Prefect Profile)
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Change logging level

Prefect default logging level: INFO

Change to DEBUG

Set environment variable: 

export PREFECT_LOGGING_LEVEL="DEBUG"
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Logging

Create custom logs with get_run_logger
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Logging

Output with INFO logging level set:
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Logging

Output with DEBUG logging level set:
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prefect.runtime
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Module for runtime context access. 

Useful for labeling, logs, etc.

Includes:

- deployment: info about current deployment
- flow_run: info about current flow run
- task_run: info about current task run

113

prefect.runtime 



114

prefect.runtime



Useful for labeling, logs, etc.
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prefect.runtime



Retries 
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Retries - guard against failure

Specify in task or a flow decorator

@task(retries=2)

@flow(retries=3)
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Flow retries
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Automatic retry

119



Automatic retry with delay
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Automatic retry with delay

Specify in task or flow decorator 

@task(retries=2, retry_delay_seconds=0.1)
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Task retries with delay

👆You can pass a list of values or an exponential_backoff 
to retry_delay_seconds for tasks. 
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States
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Prefect flow run states

What’s the state of your workflows?
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Prefect flow run states
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Prefect flow run states
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Blocks 🧱
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Blocks

   Configuration

+

Code

128



Blocks

The Block mullet:

Structured form in front, 

flexible code in back
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Create a Block from the UI
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Create a block from the UI - choose a block type
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Create a block from the UI
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Block types in UI - filter by capability 
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Under the hood, block types are Python classes 
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Blocks are instances of those Python classes (TODO add 
python class)
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Blocks are instances of those Python classes
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Create a block in Python
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Retrieve and use a block in Python
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Blocks

Reusable, modular, configuration + code

- Nestable
- Stored in database
- Can create own types
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Integrations
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Integrations

docs.prefect.io/integrations/catalog/
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https://docs.prefect.io/collections/catalog/


Integrations

Python packages that add convenience 

- Template to create your own
- Can contribute to the community
- May contain new block types you’ll register
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More helpful 
resources
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Prefect CLI

Start commands with prefect  --help is always available
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prefect --help
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Search in the UI

cmd + k or 🔍 
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102 Recap

You’ve seen how to understand the state of your workflows and 
guard against failure.

- Tasks
- Profiles
- Logging
- Retries 
- States
- Blocks
- Integrations
- More resources: help & search 
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Lab 102
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Lab 102

- Use a flow with two tasks that fetches weather data 
from open-meteo  

- Pass data between the tasks
- Add retries (add an exception to force a failure)
- Run your flow as a Python script
- Stretch 1: Log the name of the flow run
- Stretch 2: Create a block in the UI
- Stretch 3: Load the block in code and use it
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103 - Work with data and 
create automatic alerts 
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103 Agenda

- Work with data to save time and money
- Save results
- Use caching 
- Create Markdown artifacts to communicate 

insights
- Learn about user management in Prefect Cloud
- Set up automatic notifications for workflow states
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Results
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Results

The data returned by a flow or a task

1 is the result

153



Passing results
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Pass results from one task to another so Prefect can 
discover dependency relationships at runtime



Results

👆By default, Prefect returns a result that is not 
persisted to disk. It is only stored in memory.

155



Persist results with persist_result=True
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Persisted results

- Stored in .PREFECT/storage folder by default
- Pickled by default 🥒
- You can use other serializer or compress
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Results - remote data storage

Store results in cloud provider storage - use a block
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Working with big data 

Read and write data to cloud provider without passing the 
data around. 

See discussion of options:

docs.prefect.io/guides/big-data/
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http://docs.prefect.io/guides/big-data/


Caching
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Caching

What? 

Why?

⚠ task only 

Requires persisting results (so must be serializable)
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Caching: cache_key_fn

@task(cache_key_fn=task_input_hash)
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Caching

First run

Second run
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Caching: cache_expiration ⏳
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Artifacts
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Artifacts

Persisted outputs such as Markdown, tables, or links. 
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Artifacts

- Meant for human consumption
- Examples:

- Model scores
- Data quality checks
- Reports

- Gets stored in the database and shown in the UI
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Artifacts - Markdown example of weather report
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Artifacts - Markdown example

Access from UI: Runs timeline or Runs->Artifacts tab
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Prefect Cloud
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Prefect Cloud 

- Prefect takes care of the server
- User account management (some at higher tiers)

- Workspaces
- Service accounts
- RBAC
- SSO 
- Audit logs

-  Additional features
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Prefect Cloud workspaces

- Paid plans can have multiple workspaces
- Each workspace is self-contained
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Prefect Cloud - Default Roles (Pro + Enterprise)

Account level

- Owner
- Admin
- Member

Workspace level

- Owner
- Developer
- Runner
- Viewer
- Worker
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Error summaries by
Marvin AI 
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Error summaries by Marvin AI

Screenshot 
2023-09-24 at 
12.11.58 PM
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Error summaries by Marvin AI

Screenshot 
2023-09-24 at 
12.11.58 PM
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Events
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Events

- A record of what has happened

Represent:

- API calls
- State transitions
- Changes in environment
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179

Event feed



Events

Power several Cloud features:

- Flow run logs
- Audit logs
- Automations (triggers)
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Automations ⚡
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Automations

Flexible framework

- If Trigger happens, do Action
- If Trigger doesn’t happen in a time period, do 

Action
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Automation examples

- If a flow run with tag prod fails, send an email 📧
- If a data quality check fails, run a deployment to 

fetch more data 📊
- If a work pool changes state to Not Ready, create 

an incident 🚨
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Create an automation 

184

Trigger: flow run failure 
Action: notification - email



Automation trigger
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Automation action
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Create a block with notify capability
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Create an Email block
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Create an Email block

Name and save your automation.

Now you’ll receive an email when a flow run changes state! 
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103 Recap

You’ve learned about

- Working with data
- Prefect Cloud
- Error summaries by Marvin AI
- Events
- Automations 

190



Lab 103
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103 Lab 

- In the UI, make an email notification automation for 
a flow run completion 

- ❗use an Email block type
- Check out the event feed in the UI
- Stretch 1: Create a flow that contains a task that 

takes advantage of caching using task_input_hash
- Stretch 2: Create a Markdown artifact that prints a 

weather forecast in a nicely formatted table
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